首页> 外文学位 >The Structure-Property Relation in Nanocrystalline Materials: A Computational Study on Nanocrystalline Copper by Monte Carlo and Molecular Dynamics Simulations.
【24h】

The Structure-Property Relation in Nanocrystalline Materials: A Computational Study on Nanocrystalline Copper by Monte Carlo and Molecular Dynamics Simulations.

机译:纳米晶体材料的结构-性能关系:纳米晶体铜的蒙特卡罗和分子动力学模拟计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Nanocrystalline materials have been under extensive study in the past two decades. The reduction in grain size induces many abnormal behaviors in the properties of nanocrystalline materials, that have been investigated systematically and quantitatively. As one of the most fundamental relations in materials science, the structure-property relation should still apply on materials of nano-scale grain sizes. The characterization of grain boundaries (GBs) and related entities remains a big obstacle to understanding the structure-property relation in nanocrystalline materials. It is challenging experimentally to determine the topological properties of polycrystalline materials due to the complex and disordered grain boundary network presented in the nanocrystalline materials. The constantly improving computing power enables us to study the structure-property relation in nanocrystalline materials via Monte Carlo and molecular dynamic simulations.;In this study, we will first propose a geometrical construction method based on inverse Monte Carlo simulation to generate digital microstructures with desired topological properties such as grain size, interface area, triple junction length as well as their statistical distributions. The influences on the grain shapes by different topological properties are studied. Two empirical geometrical laws are examined including the Lewis rule and Aboav-Weaire law. Secondly, defect free nanocrystalline Copper (nc-Cu) samples are generated by filling atoms into the Voronoi structure and then relaxed by molecular dynamics simulations. Atoms in the relaxed nc-Cu samples are then characterized into grain atoms, GB interface atoms, GB triple junction atoms and vertex atoms using a newly proposed method. Atoms in each GB entity can also be identified. Next, the topological properties of nc-Cu samples before and after relaxation are calculated and compared, indicating that there exists a physical limit in the number of atoms to form a stable grain boundary interface and triple junction in nanocrystalline materials. In addition, we are able to obtain the statistical averages of geometrical and thermal properties of atoms across each GB interfaces, the so-called GB profiles, and study the grain size, misorientation and temperature effects on the microstructures in nanocrystalline materials. Finally, nc-Cu samples with different topological properties are deformed under simple shear using MD simulation in an attempt to study the structure-property relation in nanocrystalline materials.
机译:在过去的二十年中,纳米晶材料已经得到了广泛的研究。晶粒尺寸的减小引起了纳米晶体材料性能的许多异常行为,这些行为已经系统地和定量地进行了研究。作为材料科学中最基本的关系之一,结构属性关系仍应适用于纳米级晶粒尺寸的材料。晶界(GBs)和相关实体的表征仍然是理解纳米晶体材料中结构-性质关系的一大障碍。由于存在于纳米晶体材料中的复杂且无序的晶界网络,在实验上确定多晶材料的拓扑性质具有挑战性。不断提高的计算能力使我们能够通过蒙特卡洛(Monte Carlo)和分子动力学模拟研究纳米晶体材料中的结构-性质关系。在本研究中,我们将首先提出一种基于逆蒙特卡洛模拟的几何构造方法,以生成具有所需结构的数字微结构。拓扑特性,例如晶粒尺寸,界面面积,三重结长度及其统计分布。研究了不同拓扑性质对晶粒形状的影响。研究了两个经验几何定律,包括刘易斯定律和阿博夫-魏尔定律。其次,通过将原子填充到Voronoi结构中,然后通过分子动力学模拟使其松弛,生成无缺陷的纳米晶铜(nc-Cu)样品。然后使用新提出的方法将松弛的nc-Cu样品中的原子表征为晶粒原子,GB界面原子,GB三重连接原子和顶点原子。每个GB实体中的原子也可以被识别。接下来,计算并比较了弛豫前后nc-Cu样品的拓扑特性,这表明在纳米晶体材料中形成稳定的晶界界面和三重结的原子数存在物理极限。此外,我们能够获得每个GB界面上原子的几何和热学性质的统计平均值,即所谓的GB轮廓,并研究晶粒大小,取向错误和温度对纳米晶体材料微结构的影响。最后,使用MD模拟在简单剪切作用下使具有不同拓扑性质的nc-Cu样品变形,以研究纳米晶材料的结构-性质关系。

著录项

  • 作者

    Xu, Tao.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 256 p.
  • 总页数 256
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号