首页> 外文学位 >Lifting surface design using trailing edge devices, marginal aeroelastic stability and feedback control.
【24h】

Lifting surface design using trailing edge devices, marginal aeroelastic stability and feedback control.

机译:使用后缘装置的起升表面设计,边际气动弹性稳定性和反馈控制。

获取原文
获取原文并翻译 | 示例

摘要

Considerable promise is seen in the application of strain actuator technology as "Smart Materials" for fulfilling control functions of various kinds in aircraft. However, the strain and force capability of these actuators are known to impose limitations. To overcome these limitations, the aeromechanical design of fixed and rotary wings from control viewpoint have been investigated in this study. Three design analyses have been conducted using a simple model with a trailing-edge hinged flap or tab representing the strain actuators, including: (1) a fixed wing-flap-tab with constant forward speed, (2) a wing-flap with pulsating velocity superimposed on constant forward speed and (3) a helicopter rotor blade in hovering flight.; A generalized two-dimensional, time-domain, finite-state, Theodorsen-Greenberg unsteady aerodynamic model of the wing-flap in a pulsating velocity field has been extended and applied in these analyses to calculate the aerodynamic loads on the airfoils with a trailing-edge hinged control surface. State space representations of those lifting surface aerodynamics have been derived in time-varying format. Single- and multi-objective design optimizations have then been conducted to assess the capabilities of possible designs which maximize the amplification of the rotations and minimize force required of the control surfaces. As these optimal designs tend to approach aeroelastic instability, Linear Quadratic Gaussian (LQG) feedback controller design has been applied to assure the stability of resulting motions and improve the output performance. A discrete periodic time-varying LQG controller has also been developed to stabilize the systems in the presence of pulsating velocity effects. A dynamic inflow model has been linearized and included in the design analyses of the helicopter rotor blade to represent the three-dimensional transient behavior of the complete rotor.; The results of this research have shown the feasibility of applying properly designed trailing-edge control surfaces which make use of strain actuation concepts to both fixed and rotary wings. Further analyses and experiments are expected to be required to develop this concept of "Smart Structure" control surfaces to the point where they are ready for practical aircraft applications.
机译:在应变执行器技术的应用中,可以看到相当可观的希望,即“智能材料”可用于实现飞机上的各种控制功能。但是,已知这些致动器的应变能力和受力能力受到限制。为了克服这些限制,从控制的角度对固定翼和旋转翼的航空机械设计进行了研究。使用具有代表应变致动器的后缘铰链式襟翼或翼片的简单模型进行了三项设计分析,包括:(1)前进速度恒定的固定翼翼片,(2)脉动的翼翼(3)悬停飞行中的直升机旋翼桨叶;扩展了脉动速度场中机翼襟翼的广义二维时域有限状态Theodorsen-Greenberg非定常空气动力学模型,并在这些分析中用于计算尾随翼型的翼型上的空气动力学载荷边缘铰接控制面。这些举升表面空气动力学的状态空间表示形式是随时间变化的。然后进行了单目标和多目标设计优化,以评估可能的设计的功能,这些功能可以最大程度地提高旋转放大效果,并使控制面所需的力最小化。由于这些最佳设计趋于接近气动弹性不稳定性,因此已应用线性二次高斯(LQG)反馈控制器设计来确保最终运动的稳定性并改善输出性能。还开发了离散的周期性时变LQG控制器,以在存在脉动速度效应的情况下稳定系统。动态流入模型已经线性化,并包括在直升机旋翼桨叶的设计分析中,以表示整个旋翼的三维瞬态行为。这项研究的结果表明了使用适当设计的后缘控制面的可行性,该控制面利用应变致动概念对固定翼和旋转翼进行了设计。为了将这种“智能结构”控制面的概念发展到可以用于实际飞机应用的程度,预计将需要进一步的分析和实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号