首页> 外文学位 >Conjugate heat transfer and concurrent thermal design for electronics cooling applications.
【24h】

Conjugate heat transfer and concurrent thermal design for electronics cooling applications.

机译:用于电子冷却应用的共轭传热和同时热设计。

获取原文
获取原文并翻译 | 示例

摘要

The physics associated with forced convection in electronics cooling configurations is explored using direct numerical simulations of a representative geometry, termed the grooved channel, with the imposition of both constant heat flux and constant temperature boundary conditions. The significance of conjugate conduction/convection effects is explored by contrasting the thermal characteristics of four package configurations that differ in material composition and concentration of heat generation, but have the same external dimensions as the grooved channel. These simulations are conducted over a range of Reynolds numbers that span the laminar and transitional flow regimes corresponding to streamwise velocities characteristic of electronics cooling applications (0.75 to 1.25 m/s).; Following this fundamental study, a concurrent thermal design methodology for electronic systems will be outlined. This concurrent design methodology makes use of analytical and numerical analyses that grow in completeness with the evolution of a design. Additionally, a case study is presented that involves the wearable electronic device, Navigator. This case study represents a design effort that was carried through to fruition in a multidesigner/multidiscipline environment.; Finally, a new approach to the solution of conjugate conduction/convection phenomena, based upon the method of Reduction of Order proposed by Kantorovich and Krylov (1958), is described and exemplified for conjugate planar Poiseuille flow. In addition, this semi-analytical technique provides a balance between accuracy and time constraints and, as such, would be appropriate as an early design stage tool.
机译:通过使用具有恒定热通量和恒定温度边界条件的,具有代表性的几何结构(称为开槽通道)的直接数值模拟,探索了与电子冷却配置中的强制对流相关的物理学。通过对比四种封装结构的热特性,探讨了共轭传导/对流效应的重要性,这四种封装结构的材料成分和生热集中度不同,但外部尺寸与沟槽通道相同。这些模拟是在一定范围的雷诺数范围内进行的,这些雷诺数跨越层流和过渡流态,对应于电子冷却应用的流向速度特性(0.75至1.25 m / s)。在进行了基础研究之后,将概述电子系统的并行热设计方法。这种并行设计方法论利用了随着设计的发展而完整地增长的分析和数值分析。此外,还提供了一个涉及可穿戴电子设备Navigator的案例研究。该案例研究代表了在多设计者/多学科环境中实现的设计成果。最后,描述并举例说明了基于Kantorovich和Krylov(1958)提出的“减少阶次”方法的共轭传导/对流现象的新求解方法,并举例说明了共轭平面Poiseuille流。另外,这种半分析技术在精度和时间限制之间提供了一种平衡,因此,它适合作为早期设计阶段的工具。

著录项

  • 作者

    Nigen, Jay Scott.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号