首页> 外文学位 >Plasma-induced self-phase and cross-phase modulation of femtosecond laser pulses.
【24h】

Plasma-induced self-phase and cross-phase modulation of femtosecond laser pulses.

机译:飞秒激光脉冲的等离子体感应自相位和交叉相位调制。

获取原文
获取原文并翻译 | 示例

摘要

The spectral, temporal, and spatial characteristics of plasma-induced self-phase and cross-phase modulation in rare gases have been investigated using a femtosecond KrF excimer laser focused to peak intensities of 10{dollar}sp{lcub}14{rcub}{dollar}-10{dollar}sp{lcub}15{rcub}{dollar} W cm{dollar}sp{lcub}-2{rcub}.{dollar} The quiver energy of a free electron under these conditions is less than the ionization potential of all rare gases, ensuring that ionization occurs only by optical field-induced processes. Spectral blueshifts of up to 2 nm have been observed, and the blueshifted spectra show an oscillatory structure. The blueshifted spectra are shown to be the result of plasma-induced self-phase modulation and can be modeled by assuming tunneling ionization and one dimensional pulse propagation. The newly discovered oscillatory structure in the spectra is related to that observed in earlier experiments on self-phase modulation in optical fibers.; To investigate the temporal behavior of the field ionization process, pump-probe experiments have been performed with a 100 fs probe pulse at 497 nm and a 400 fs pump pulse at 248 nm. Under conditions of weak ionization (Z {dollar}ll{dollar} 1), pump-probe experiments and theoretical calculations show that the ionization rate of the field ionized gas is maximum at the peak of the laser pulse and that the degree of ionization changes over a time equal to about half of the pump pulse width. By observing changes in the transmission of the probe pulse caused by plasma absorption, the electron temperature of a field ionized rare gas is determined to be on the order of 1 eV. The time varying electron density in the pump-probe experiments also causes plasma-induced cross-phase modulation, or spectral blueshifting of the probe pulse spectrum of up to 15 nm.; The pump-probe experiments show that plasma defocusing causes the spectral blueshifting to be spatially dependent. Experimental results and a two dimensional pulse propagation model indicate that the most defocused beam components also show the maximum spectral blueshift. Plasma-induced cross-phase modulation has also been used to characterize the amplitude and phase of a 1 ps chirped pulse at 497 nm and the pulse width of a 400 fs pulse at 147 nm generated by four wave frequency mixing in xenon.
机译:已使用飞秒KrF受激准分子激光聚焦到10 {dollar} sp {lcub} 14 {rcub} {的峰值强度)来研究稀有气体中等离子体诱导的自相位和交叉相位调制的光谱,时间和空间特性美元} -10 {dollar} sp {lcub} 15 {rcub} {dollar} W cm {dollar} sp {lcub} -2 {rcub}。{dollar}在这些条件下,自由电子的颤动能量小于所有稀有气体的电离电势,确保仅通过光场感应过程发生电离。已经观察到高达2nm的光谱蓝移,并且该蓝移光谱显示出振荡结构。蓝移光谱显示为等离子体诱导的自相位调制的结果,可以通过假设隧道离子化和一维脉冲传播进行建模。光谱中新发现的振荡结构与早期的光纤自相位调制实验中观察到的有关。为了研究场电离过程的时间行为,已经用497 nm处的100 fs探针脉冲和248 nm处的400 fs泵浦脉冲进行了泵浦探针实验。在弱电离的条件下(Z {dolll} ll {dollar} 1),泵浦探针实验和理论计算表明,场电离气体的电离速率在激光脉冲的峰值处最大,并且电离度发生变化在大约等于泵浦脉冲宽度一半的时间内。通过观察由等离子体吸收引起的探测脉冲的传输变化,可以确定场离子化的稀有气体的电子温度约为1 eV。在泵浦探针实验中,随时间变化的电子密度还会引起等离子体感应的交叉相位调制,或使探针脉冲光谱的光谱蓝移达到15 nm。泵浦探针实验表明,等离子体散焦会导致光谱蓝移与空间有关。实验结果和二维脉冲传播模型表明,最散焦的光束分量也显示出最大的光谱蓝移。等离子体诱导的交叉相位调制也已用于表征氙气中四波混频产生的497 nm处1 ps and脉冲的幅度和相位以及147 nm处400 fs脉冲的脉冲宽度。

著录项

  • 作者

    Le Blanc, Stephen Paul.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Physics Fluid and Plasma.; Physics Optics.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号