首页> 外文学位 >Supercritical droplet vaporization and combustion in quiescent and forced-convective environments.
【24h】

Supercritical droplet vaporization and combustion in quiescent and forced-convective environments.

机译:静态和强制对流环境中的超临界液滴蒸发和燃烧。

获取原文
获取原文并翻译 | 示例

摘要

Vaporization and combustion of liquid droplets in both subcritical and supercritical environments have been studied systematically. A varieties of liquid propellants and propellant simulants, including hydrocarbon and cryogenic fluids, in both steady and oscillatory environments, are treated. The formulation is based on the full conservation equations for both gas and liquid phases and accommodates variable properties and finite-rate chemical kinetics. Full account is taken of thermodynamic non-idealities and transport anomalies at high pressures as well as liquid/vapor phase equilibrium for multi-component mixtures. Because the model allows solutions from first principles, a systematic examination of the droplet behavior over wide ranges of pressure, temperature, and ambient flow velocity is made possible. Results can not only enhance the basic understanding of the problem, but also serve as a basis for establishing droplet vaporization and combustion correlations for the study of liquid rocket engine combustion, performance, and stability.;A series of calculations have been performed to understand the effects of ambient flow conditions on droplet gasification behavior. Results indicate that the velocity and thermodynamic state of the ambient flow have strong influences on the mass, momentum, and energy transport in the droplet gasification and burning processes. The droplet gasification rate increases progressively with pressure and ambient Reynolds number. The amplitude of pressure-coupled droplet vaporization response increases with increasing pressure owing to the susceptibility of enthalpy of vaporization to ambient flow oscillations at high pressures. However, the effect of mean pressure on the phase angle of the droplet vaporization response appears quite limited.;Detailed flow structures and thermodynamic property variations are examined to reveal underlying mechanisms for droplet gasification and burning as well as deformation and breakup dynamics at supercritical pressures. Correlations of droplet lifetime and aerodynamic drag coefficient are developed as functions of fluid thermodynamic state, Reynolds number, and vaporization transfer number.
机译:对亚临界和超临界环境中液滴的汽化和燃烧进行了系统的研究。在稳定和振荡环境下,都可以处理各种液态推进剂和推进剂模拟物,包括碳氢化合物和低温流体。该公式基于气相和液相的完全守恒方程,并包含可变的特性和有限速率的化学动力学。充分考虑了多组分混合物在高温下的热力学非理想性和传输异常以及液相/汽相平衡。由于该模型允许采用第一原理的解决方案,因此可以在很大的压力,温度和环境流速范围内系统地检查液滴行为。结果不仅可以增强对该问题的基本理解,而且可以作为建立液滴汽化和燃烧相关性的基础,用于研究液体火箭发动机的燃烧,性能和稳定性。进行了一系列计算以了解该问题。流动条件对液滴气化行为的影响结果表明,在液滴气化和燃烧过程中,环境流的速度和热力学状态对质量,动量和能量传输有很大影响。液滴气化速率随压力和环境雷诺数逐渐增加。压力耦合的液滴汽化响应的幅度随着压力的增加而增加,这是由于汽化的焓对高压下的环境流动振荡的敏感性。然而,平均压力对液滴汽化响应的相角的影响似乎是非常有限的。;详细的流动结构和热力学性质变化被研究以揭示液滴气化和燃烧的基本机理,以及在超临界压力下的变形和破裂动力学。液滴寿命和空气动力阻力系数之间的相关性是根据流体热力学状态,雷诺数和汽化传递数来确定的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号