首页> 外文学位 >Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System.
【24h】

Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System.

机译:持续爆震设备的研究:脉冲爆震发动机穿越系统和旋转爆震发动机系统。

获取原文
获取原文并翻译 | 示例

摘要

An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation.;A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.
机译:在脉冲爆震发动机穿越系统上进行了一项实验研究,以研究重复,冲击引发的燃烧的可行性并表征引发性能。 PDE交叉系统可以减少爆燃到爆轰的过渡长度,同时采用单个火花源来启动多PDE系统。通过清晰通道传播的冲击波的可视化显示了领先的冲击波背后的复杂冲击波。冲击波马赫数和衰减率对于不同的分频管几何形状和工作频率保持恒定。由于高温电离气体从驱动器PDE进入分流管的正向流动和电离气体从驱动PDE的反向流向分流管的反向流动,在分流管内形成温度梯度,这会导致驱动器间歇性自动点火PDE。受驱动的PDE中的启动性能在很大程度上取决于冲击波反射区域中的受驱动的PDE初始皮肤温度。使用优化的参数开发了与交叉管相连的爆震管阵列,并且通过并通过冲击波反射实现了由冲击引发的燃烧的成功运行。最后,开发了一种空气呼吸的PDE-Crossover系统,以表征在空气呼吸脉冲爆震发动机中冲击引发燃烧的可行性。将冲击引发的燃烧的引发效果与通过预雷管的火花放电和爆炸注入进行比较。在所有情况下,冲击引发的燃烧都能产生比火花放电更好的起爆性能,并且与起爆前的起爆相比,具有相当的起爆过渡期长度。计算研究表征了旋转起爆发动机内的混合过程和喷射流场。改变喷射参数,包括反应物流速,反应物喷射面积,燃料喷射的位置和燃料喷射分布,以评估对混合的影响。减少反应物注入面积可改善燃料向错流空气中的渗透,增强燃料在环空中的湍流扩散,并增加局部当量比和流体混合度。与共线燃油喷射相比,交错的燃油喷射孔会降低混合比例。最后,由于对流停留时间的增加,通过增加环空背压来模拟喷嘴集成会增加注入区域的局部当量比。

著录项

  • 作者

    Driscoll, Robert B.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号