首页> 外文学位 >Helicopter nonlinear control using adaptive feedback linearization.
【24h】

Helicopter nonlinear control using adaptive feedback linearization.

机译:使用自适应反馈线性化的直升机非线性控制。

获取原文
获取原文并翻译 | 示例

摘要

This thesis considers the problem of designing large envelope flight controllers for helicopters, in particular, accounting for the fact that it is virtually impossible to obtain an explicit analytical model for the equations of motion valid for the entire flight regime. The technique involves superimposing two control techniques in order to meet stability and performance objectives. The primary control is based on the inversion of an approximate model of the helicopter. The techniques of pseudoinverse-based full model inversion control, input-output linearization, and two time scale, singular perturbation control are compared for the purpose of inverting the nonsquare dynamics of the helicopter. The results indicate that the two time scale controller is most compatible with the natural behavior of the helicopter. In fact the two time scale controller, when synthesized based on linear aerodynamics from the hover flight condition, provides a stable response for essentially the entire flight envelope when applied to a comprehensive simulation model of the helicopter. The secondary control is an online neural network which adaptively corrects for the inversion error resulting from the approximate model inversion. It is shown that when the network structure is representative of the structure of the inversion error, then the closed loop performance is relatively insensitive to changes in the network parameters. This fact alleviates one of the classical problems in adaptive control which involves choosing an appropriate adaptation rate. It is shown that a relatively simple neural network can be augmented to an approximate model to provide good performance and tracking for the entire flight regime. The scope of the research and contributions include: (1) Development of a fixed structure, nonlinear, approximate model which is valid for a large flight regime without the use of table lookups; (2) Identification of the relationship between the zeros of the linear approximation of the system and the closed loop stability of the non-linear system, in particular, the relationship between the zeros of the linear approximation and the zero dynamics of the nonlinear system; (3) Analysis of the inversion error in order to determine the appropriate structure for an online neural network to account for model variations and disturbances throughout the flight envelope, (4) Investigation of the effect of varying the parameters of the network, and in particular, identification of the relationship between network structure and sensitivity of closed loop performance to parameter variations; (5) Evaluation of the robustness of the network by implementing the controller into a comprehensive simulation which contains significant unmodeled dynamics and uncertainty in the aerodynamic model.
机译:本文考虑了为直升机设计大型信封飞行控制器的问题,特别是考虑到以下事实:实际上不可能获得对整个飞行状态均有效的运动方程式的显式解析模型。该技术涉及叠加两种控制技术,以满足稳定性和性能目标。主要控制基于直升机的近似模型的反转。比较了基于伪逆的全模型逆控制技术,输入输出线性化技术和两个时标奇异摄动控制技术,目的是反转直升机的非平方动力。结果表明,两个时标控制器与直升机的自然行为最兼容。实际上,两个时标控制器在基于悬停飞行条件的线性空气动力学进行合成时,当应用于直升机的综合仿真模型时,基本上可以为整个飞行包迹提供稳定的响应。次级控制是一个在线神经网络,它可以自适应地校正由近似模型反演引起的反演误差。结果表明,当网络结构代表反演误差的结构时,闭环性能对网络参数的变化相对不敏感。这一事实减轻了自适应控制中的经典问题之一,该问题涉及选择适当的自适应速率。结果表明,可以将一个相对简单的神经网络扩充为一个近似模型,以提供良好的性能并跟踪整个飞行状态。研究和贡献的范围包括:(1)开发固定结构,非线性,近似模型,该模型对大型飞行状态有效,而无需使用表格查找; (2)识别系统的线性逼近的零点与非线性系统的闭环稳定性之间的关系,尤其是线性逼近的零点与非线性系统的零动力学之间的关系; (3)分析反演误差,以便为在线神经网络确定适当的结构,以解决整个飞行包线内的模型变化和干扰;(4)研究改变网络参数的影响,尤其是,确定网络结构与闭环性能对参数变化的敏感性之间的关系; (5)通过将控制器实施为全面的仿真来评估网络的鲁棒性,该仿真包含大量未建模的动力学和气动模型中的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号