首页> 外文学位 >Modeling crash dynamic responses of high energy absorbing materials by multi-body, non-linear finite element, and optimization methods.
【24h】

Modeling crash dynamic responses of high energy absorbing materials by multi-body, non-linear finite element, and optimization methods.

机译:通过多体非线性有限元和优化方法对高能量吸收材料的碰撞动态响应进行建模。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, the problem of contact/impact force optimization or minimization of damage is investigated. Existing contact force models are extended and their applications to multibody impacts are presented. A parameter optimization methodology is then developed for minimizing the peak contact force by searching for the optimal parameters in the force model such as the stiffness and the damping coefficients. A single degree-of-freedom vibro-impact model is used for two impacting bodies and shown to be an effective representation of the multibody system for the duration of impact. In addition to the initial conditions such as impact velocity, the optimization methodology takes a given maximum indentation, a required crash depth as its constraint. The optimal parameter searching is realized by using the method of modified feasible direction for constrained minimization. Since these parameters reflect the material properties and geometry configurations of the two bodies in contact, the optimal parameters provide useful guidelines for the selection of proper impact resistant materials. Mechanisms of energy absorbing during an impact are investigated based upon the information on the optimal parameters. In order to describe the impact characteristics of high energy absorbing materials, a contact force model is proposed, and its capability in describing impact energy dissipation is explored by comparing the analytical results to those from given experiments.; The developed methodologies are then applied to the study of gross motion behavior of human body and the potential injuries in various crash environment. Specifically, the problem of reducing the head injuries to an occupant as a result of a head contact with the surrounding, (bulkhead, instrument panel, and interior wall for aircraft; or windshield, and front panels for ground vehicles), is considered. Multibody model of the occupant from SOM-LA/TA (Seat/Occupant Model for Light/Transportation Aircraft) is used in conjunction with a created front panel model adopting the developed contact/impact force model. This environment can simulate the head impact of the occupant on energy absorbing padding materials. By using the nesting technique in design of experiment, a numerical statistical test is performed and it is shown that the single degree-of-freedom vibro-impact system can represent the multibody occupant model during the head impact. The concept of effective mass is used in the form of impact/contact force and maximum indentation in the evaluation of vibro-impact system. Parameter optimization of this system shows that the system described by the new model and having optimal parameters displays good energy absorbing capability. Substructuring technique is also used to simulate the head impact on the energy absorbing materials with the help of finite element method. Required padding thickness is obtained for securing the safety of the passengers in the crash environment.
机译:本文研究了接触/冲击力优化或损伤最小化的问题。扩展了现有的接触力模型,并介绍了它们在多体碰撞中的应用。然后开发一种参数优化方法,以通过在力模型中搜索最佳参数(例如刚度和阻尼系数)来最小化峰值接触力。单自由度振动冲击模型用于两个撞击物体,并显示为撞击期间多物体系统的有效表示。除了诸如冲击速度之类的初始条件外,优化方法还采用了给定的最大压痕,所需的碰撞深度作为约束条件。采用修正可行方向约束最小化方法实现最优参数搜索。由于这些参数反映了两个接触物体的材料特性和几何形状,因此最佳参数为选择合适的耐冲击材料提供了有用的指导。根据有关最佳参数的信息,研究冲击过程中的能量吸收机理。为了描述高能量吸收材料的冲击特性,提出了一种接触力模型,并通过将分析结果与给定实验的结果进行比较,探索了其描述冲击能量耗散的能力。然后将开发的方法应用于研究人体的总体运动行为以及各种碰撞环境下的潜在伤害。具体地,考虑了减少由于与周围环境(飞机头,仪表板和飞机的内壁;或挡风玻璃和地面车辆的前面板)的头部接触而对乘员造成的头部伤害的问题。 SOM-LA / TA的乘员多体模型(轻型/运输飞机的座椅/乘员模型)与采用开发的接触/撞击力模型的前面板模型结合使用。这种环境可以模拟乘员头部对吸能衬垫材料的撞击。通过在实验设计中使用嵌套技术,进行了数值统计测试,结果表明,单自由度振动冲击系统可以代表头部撞击过程中的多人乘员模型。有效质量的概念以冲击/接触力和最大压痕的形式用于振动冲击系统的评估中。该系统的参数优化表明,该新模型所描述的具有最优参数的系统具有良好的能量吸收能力。借助有限元方法,还使用子构造技术来模拟头部对吸能材料的冲击。获得所需的衬垫厚度,以确保在碰撞环境中乘客的安全。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号