首页> 外文学位 >Dynamic analyses of a methanol to hydrogen steam reformer for transportation applications.
【24h】

Dynamic analyses of a methanol to hydrogen steam reformer for transportation applications.

机译:用于运输的甲醇制氢蒸汽重整器的动态分析。

获取原文
获取原文并翻译 | 示例

摘要

Improving the dynamic response of the steam reformer in a fuel cell power plant designed for transportation applications will enable the power plant to operate in a transient manner with a reduced need for supplementary batteries and their associated cost, weight, and life cycle limitations. As an aid to improving the dynamic response of the steam reformer, two dynamic models have been developed to characterize and improve those aspects of the design that limit its ability to respond to the varying output requirements occurring in vehicular applications.; The first model is a phenomenological model of the reformer. This model is used to show the effect of the reformer response speed on basic vehicle characteristics such as the supplementary battery requirement and the overall vehicle weight. The second model is a first principles model which identifies important physical parameters in the steam reformer. The first principles model is used with a design optimization procedure to determine the values of the steam reformer design parameters which will yield the fastest response time to a step input in hydrogen demand under a variety of initial conditions. Results of this analysis suggest that a steam reformer optimized for fast response could have response times on the order of 15 to 20 seconds. A sensitivity analysis suggests that this response can be achieved primarily by reducing the thermal capacity of the reformer and improving the rate of heat transfer to the gaseous constituents within the reformer. With a steam reformer response time on the order of 15 to 20 seconds, ultracapacitor and flywheel technology become a more attractive supplementary energy storage method due to their superior life cycle and power density characteristics when compared with traditional chemical batteries.
机译:改善设计用于交通运输应用的燃料电池电站中蒸汽重整器的动态响应,将使该电站能够以瞬态方式运行,从而减少了对辅助电池的需求及其相关的成本,重量和寿命周期限制。为了改善蒸汽重整器的动态响应,已经开发了两个动态模型来表征和改进设计的那些方面,这些方面限制了其对车辆应用中发生的变化的输出要求的响应能力。第一个模型是重整器的现象学模型。该模型用于显示重整器响应速度对基本车辆特性(例如补充电池需求和车辆总重量)的影响。第二个模型是第一个原理模型,它确定了蒸汽重整器中的重要物理参数。第一原理模型与设计优化程序一起使用,以确定蒸汽重整器设计参数的值,该参数将在各种初始条件下对氢气需求量的阶跃输入产生最快的响应时间。该分析结果表明,为快速响应而优化的蒸汽重整器可能具有15到20秒的响应时间。敏感性分析表明,可以通过降低重整器的热容量和提高热量传递到重整器内气体成分的速率来实现此响应。蒸汽重整器的响应时间约为15至20秒,与传统化学电池相比,超级电容器和飞轮技术因其卓越的生命周期和功率密度特性而成为一种更具吸引力的辅助储能方法。

著录项

  • 作者

    Ohl, Gregory Lyle.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号