首页> 外文学位 >Application of Gaussian Moment Closures to Three-Dimensional Micro-Scale Flows.
【24h】

Application of Gaussian Moment Closures to Three-Dimensional Micro-Scale Flows.

机译:高斯矩闭合在三维微尺度流中的应用。

获取原文
获取原文并翻译 | 示例

摘要

A parallel, implicit, adaptive mesh refinement (AMR), finite-volume scheme is described for the solution of the standard and regularized Gaussian moment closures on three-dimensional, multi-block, body-fitted, hexahedral meshes. The standard Gaussian closure has been shown to accurately predict non-equilibrium phenomena at moderate Knudsen numbers through an anisotropic treatment of pressure. The regularized closure builds on these advantages and includes the effects of non-equilibrium heat transfer by means of a first-order correction to the standard Gaussian closure. The combined moment closure treatment / numerical method is applied to the prediction of three-dimensional, non-equilibrium, micro-scale, gaseous flows. Unlike other regularized moment closures, the underlying closure is the standard maximum-entropy Gaussian closure which provides a fully-realizable and strictly hyperbolic description of non-equilibrium gaseous flows that is valid from the continuum limit, through the transition regime, and up to the free-molecular flow limit. The proposed finite-volume scheme uses Riemann-solver-based flux functions and limited linear reconstruction to provide accurate and monotonic solutions, even in the presence of large solution gradients and/or under-resolved solution content. A rather effective and highly scalable parallel implicit time-marching scheme based on a Jacobian-free inexact Newton-Krylov-Schwarz (NKS) approach with additive Schwarz preconditioning and domain partitioning following from the multi-block AMR mesh is used to obtain solutions to the non-linear ordinary-differential equations that result from finite-volume spatial discretization procedure. Details are given of the standard and regularized Gaussian closure, extensions for diatomic gases, and slip-flow boundary treatment. Numerical results for several canonical flow problems demonstrate the potential of the closures, that when combined with an efficient parallel solution method, provide an effective means for accurately predicting a range of fully three-dimensional non-equilibrium gaseous flow behavior.
机译:描述了一种并行,隐式,自适应网格细化(AMR)的有限体积方案,用于在三维,多块,拟合人体,六面体网格上求解标准和正则高斯矩闭合。通过对压力进行各向异性处理,已证明标准的高斯闭合可以准确预测中等Knudsen数下的非平衡现象。正则化闭包建立在这些优势的基础上,并包括通过对标准高斯闭包进行一阶校正的方式实现非平衡传热的效果。组合的力矩闭合处理/数值方法被应用于三维,非平衡,微观尺度,气态流动的预测。与其他正则矩闭包不同,底层闭包是标准的最大熵高斯闭包,它提供了对非平衡气态流的完全可实现且严格双曲的描述,该描述从连续极限,过渡状态直至自由分子流动极限。所提出的有限体积方案使用基于Riemann求解器的通量函数和有限的线性重构来提供准确且单调的解,即使存在较大的解梯度和/或解浓度不足的情况也是如此。基于多块AMR网格的,基于无雅可比的不精确牛顿-克雷洛夫-舒瓦兹(NKS)方法,加性施瓦茨预处理和域划分的相当有效且高度可扩展的并行隐式时间行进方案用于获取有限体积空间离散化程序产生的非线性常微分方程。详细介绍了标准和正则高斯封闭,双原子气体的扩展以及滑流边界处理。几个规范流动问题的数值结果表明了封闭的潜力,当与有效的并行求解方法结合使用时,可以提供一种有效的手段来准确预测全三维非​​平衡气态流动行为的范围。

著录项

  • 作者

    Lam, Christopher.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Aerospace engineering.;Molecular physics.;Computer engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号