首页> 外文学位 >Neural network servo control for ultra-precision machining at extremely low feed rates.
【24h】

Neural network servo control for ultra-precision machining at extremely low feed rates.

机译:神经网络伺服控制,以极低的进给速度进行超精密加工。

获取原文
获取原文并翻译 | 示例

摘要

Diamond turning of brittle materials such as glass, ceramic, germanium and zinc sulfide has been of considerable research interest in recent years due to applications in optics and precision engineering systems. When diamond turning brittle materials, material removal should be kept within the ductile regime to avoid subsurface damage. It is generally accepted that ductile regime machining of brittle materials can be accomplished using extremely low depth of cut and feed rates. Furthermore, the tool positioning accuracy of the machine must be in the nanometer range to obtain optical quality machined parts with surface finish and profile accuracy on the order of 10 nm and 100 nm respectively. Nanometric positioning accuracy of the machine tool axes is difficult particularly at low feed rates due to friction and backlash. Friction is highly nonlinear particularly at low speeds due to the transition from stiction to Coulomb friction, and as such is very difficult to model. Standard proportional-integral-derivative (PID) type controllers are unable to deal with this large and erratic friction characteristic within the requirements of ultra precision machining. In order to compensate the effects of friction in the machine tool axes, a learning motion control algorithm based on the Cerebellar Model Articulation Controller (CMAC) neural network is studied for servo control. The learning controller was implemented using 'C' language on a DSP based open architecture controller for a single point diamond turning machine.
机译:由于在光学和精密工程系统中的应用,近年来脆性材料(例如玻璃,陶瓷,锗和硫化锌)的金刚石车削引起了广泛的研究兴趣。当金刚石车削脆性材料时,应将材料去除保持在可延展范围内,以避免地下损伤。通常认为,可以使用极低的切削深度和进给速度来完成脆性材料的延性加工。此外,机器的工具定位精度必须在纳米范围内,以获得具有表面光洁度和轮廓精度分别为10 nm和100 nm数量级的光学质量的机械零件。机床轴的纳米级定位精度非常困难,尤其是在低进给速度下,由于摩擦和间隙而导致的。摩擦是高度非线性的,特别是在低速时,由于从静摩擦到库仑摩擦的过渡,因此很难建模。在超精密加工的要求范围内,标准比例积分微分(PID)型控制器无法处理这种较大且不稳定的摩擦特性。为了补偿机床轴上的摩擦力影响,研究了基于小脑模型关节控制器(CMAC)神经网络的学习运动控制算法,用于伺服控制。学习控制器是在单点金刚石车床的基于DSP的开放式架构控制器上使用“ C”语言实现的。

著录项

  • 作者

    Larsen, Gary Alan.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号