首页> 外文学位 >Efficient mesh truncation techniques for the solution of Maxwell's equations using the finite-difference time domain method.
【24h】

Efficient mesh truncation techniques for the solution of Maxwell's equations using the finite-difference time domain method.

机译:使用有限差分时域法求解麦克斯韦方程组的高效网格截断技术。

获取原文
获取原文并翻译 | 示例

摘要

The application of the Finite Difference Time Domain (FDTD) method to open region radiation problems requires the truncation of the infinite domain down to a finite-sized domain amenable to numerical simulation. The accuracy of the solution and the computational expense required to attain the solution are dependent on the method used to simulate the infinite domain. The Berenger perfectly matched layer (PML) technique is shown to offer the potential for near reflectionless absorption of propagating waves at the expense of additional layers of absorbing material with twice the number of unknowns as in the interior domain. However, since the PML allows the buffer region between the discontinuity and the termination plane to be reduced, the overall computation time for a given accuracy level may be significantly reduced.; An efficient reduced field implementation of the Berenger perfectly matched layer concept is developed for regions where there is one nonzero conductivity component. The split-field components in the PML are reduced to the original six field components and two additional auxiliary variables that represent time-dependent sources. Combination of the reduced field formulation in the wall regions with the split formulation in the edges and corners results in an efficient PML algorithm. Memory and CPU time requirements may be reduced by up to one-third without loss of accuracy.; The evanescent PML modification for the split-field PML is shown to apply to the unsplit formulation for a particular choice of the PML material parameters. A lossy modified PML formulation similar to the generalized PML is also presented.; The modified PML formulation is applied to the analysis of inhomogeneous antenna structures. Numerical studies are performed to determine general PML parameter guidelines required for accurate calculation of far-field radiation patterns and input impedance. The PML is also applied to the problem of near-field characterization of antennas radiating in the presence of biological bodies.
机译:有限差分时域(FDTD)方法在开放区域辐射问题中的应用要求将无限域截断为可进行数值模拟的有限大小的域。解决方案的准确性和获得解决方案所需的计算费用取决于用于模拟无限域的方法。贝伦格完美匹配层(PML)技术被证明可以为传播的波提供近乎无反射的吸收,但其代价是增加了其他吸收材料层,其未知数是内部域的两倍。但是,由于PML允许减少不连续点和终止平面之间的缓冲区,因此可以显着减少给定精度级别的总体计算时间。针对存在一个非零电导率成分的区域,开发了Berenger完美匹配层概念的有效简化场实现方法。 PML中的分割字段分量减少为原始的六个字段分量和两个附加的辅助变量,这些变量代表时间相关的源。将壁区域中的缩小场公式与边缘和角部中的拆分公式相结合,可以生成有效的PML算法。内存和CPU时间要求最多可减少三分之一,而不会损失准确性。对于分裂场PML的渐逝PML修改显示为适用于未分裂配方,用于特定选择的PML材料参数。还提出了一种类似于广义PML的有损修改PML公式。修改后的PML公式适用于不均匀天线结构的分析。进行数值研究以确定准确计算远场辐射方向图和输入阻抗所需的一般PML参数准则。 PML还应用于存在生物体的情况下辐射天线的近场表征问题。

著录项

  • 作者

    Veihl, Jonathon Casimir.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号