首页> 外文学位 >Mass transfer and modeling of liquid-phase cyclohexane oxidation process in agitated reactors.
【24h】

Mass transfer and modeling of liquid-phase cyclohexane oxidation process in agitated reactors.

机译:搅拌反应器中液相环己烷氧化过程的传质和建模。

获取原文
获取原文并翻译 | 示例

摘要

The equilibrium solubility {dollar}(Csp{lcub}*{rcub}),{dollar} volumetric liquid-side mass transfer coefficient {dollar}(ksb{lcub}L{rcub}a),{dollar} Sauter mean diameter {dollar}(dsb{lcub}S{rcub}),{dollar} interfacial area (a), gas holdup {dollar}(varepsilonsb{lcub}G{rcub}){dollar} and liquid-side mass transfer coefficient {dollar}(ksb{lcub}L{rcub}){dollar} of {dollar}rm Nsb2{dollar} and {dollar}rm Osb2{dollar} in cyclohexane were measured under industrial conditions in 4 liter ZipperClave gas inducing (GIR) and surface aeration (SAR) reactors. The data were obtained in wide ranges of mixing speed (400-1200 rpm), liquid height (0.17-0.27 m) temperature (330-430 K) and pressure (7-35 bar) in both GIR and SAR.; The solubility and {dollar}ksb{lcub}L{rcub}a{dollar} values for {dollar}rm Nsb2{dollar} and {dollar}rm Osb2{dollar} in cyclohexane were calculated using a modified Peng-Robinson equation state and the transient physical gas absorption technique. A high shutter speed video camera as well as image processing and analysis system were used to measure gas bubble size distribution using a photographic technique.; The central composite statistical design and analysis technique was used to study the effects of mixing speed, liquid height, temperature and pressure on the mass transfer parameters of {dollar}rm Nsb2{dollar} and {dollar}rm Osb2.{dollar} The solubility of both gases were found to increase with pressure as well as temperature and under the same operating conditions {dollar}rm Osb2{dollar} was found to have higher solubility than {dollar}rm Nsb2{dollar} in cyclohexane. Statistical models that correlate {dollar}ksb{lcub}L{rcub}a{dollar} at 95% confidence level with the process variables were established for both gases in the GIR and the SAR. Mixing speed and liquid height were found to be the most important process variables affecting {dollar}ksb{lcub}L{rcub}a, a, varepsilonsb{lcub}G{rcub},{dollar} and {dollar}ksb{lcub}L{rcub}{dollar} of {dollar}rm Nsb2{dollar} and {dollar}rm Osb2{dollar} in both reactors. The bubbles size were found to follow log-normal distribution with a Sauter mean diameter {dollar}(dsb{lcub}S{rcub}){dollar} of 760 {dollar}rmmu m.{dollar}; A comprehensive mathematical model using a series of CSTR(s) for the non-catalytic and catalytic liquid-phase cyclohexane oxidation processes was developed using literature kinetic data and the mass transfer parameters obtained in this study under industrial conditions. The effects of mass transfer and process variables on the conversion, yield and selectivity of both processes were demonstrated using the model. An optimization approach based on {dollar}ksb{lcub}L{rcub}a{dollar} in each reactor that maximizes the cyclohexanol and cyclohexanone yield and minimizes the by-product yield was also developed for both processes.
机译:平衡溶解度{美元}(Csp {lcub} * {rcub}),{美元}液体侧传质系数{美元}(ksb {lcub} L {rcub} a),{美元}苏特平均直径{美元}(dsb {lcub} S {rcub}),{dollar}界面面积(a),储气量{dollar}(varepsilonsb {lcub} G {rcub}){dollar}和液体侧传质系数{dollar}(在工业条件下,在4升的ZipperClave气体诱导(GIR)和表面通气条件下,测量了环己烷中的{rm} Nsb2 {dol}和{rmrm Osb2 {dollar} SAR)反应堆。在GIR和SAR的混合速度(400-1200 rpm),液体高度(0.17-0.27 m)温度(330-430 K)和压力(7-35 bar)的宽范围内获得数据。使用修正的Peng-Robinson方程状态计算rmrm Nsb2 {dollar}和rmrm Osb2 {dollar}在环己烷中的溶解度和ksb {lcub} L {rcub} a {dollar}值瞬态物理气体吸收技术。使用高快门速度的摄像机以及图像处理和分析系统,通过照相技术测量气泡尺寸分布。使用中央复合统计设计和分析技术研究混合速度,液体高度,温度和压力对{rm} rm Nsb2 {dollar}和{dollar} rm Osb2传质参数的影响。发现两种气体中的两种气体都随压力以及温度而增加,并且在相同的操作条件下,发现{rm} Osb2 {dollar}在环己烷中的溶解度高于{rm} Nsb2 {dollar}。针对GIR和SAR中的两种气体,建立了将95%置信度下的{ksb {lcub} L {rcub} a {dollar}与过程变量相关的统计模型。混合速度和液体高度是影响{ks} {b} lc {L} {a},a,varepsilonsb {lcub} G {rcub},{dollar}和{dols} ksb {lcub} a的最重要的过程变量。两个反应堆中{rm} rm Nsb2 {dollar}和{dollar} rm Osb2 {dollar}的L {rcub} {dollar}。发现气泡尺寸遵循对数正态分布,索特平均直径{dollar}(dsb {lcub} S {rcub}){dollar}为760 {dollar} rmmu m。{dollar};利用文献中的动力学数据和在工业条件下本研究中获得的传质参数,开发了使用一系列CSTR的非催化和催化液相环己烷氧化过程的综合数学模型。使用该模型证明了传质和工艺变量对两种工艺的转化率,产率和选择性的影响。还针对两种方法都开发了一种优化方法,该方法基于每个反应器中的{ksb {lcub} L {rcub} a {dollar},以最大化环己醇和环己酮的产率,并最小化副产物的产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号