首页> 外文学位 >Integration of an unmanned aircraft system and ground-based remote sensing to estimate spatially distributed crop evapotranspiration and soil water deficit throughout the vegetation soil root zone.
【24h】

Integration of an unmanned aircraft system and ground-based remote sensing to estimate spatially distributed crop evapotranspiration and soil water deficit throughout the vegetation soil root zone.

机译:集成无人飞行器系统和地面遥感,以估计整个植被土壤根区的空间分布的作物蒸散量和土壤水分亏缺。

获取原文
获取原文并翻译 | 示例

摘要

Irrigation is the largest consumer of fresh water and produces over 40% of the world's food and fiber supply. As the world's population continues to grow rapidly, the increased demands on fresh water will force the agricultural community to improve the efficiency and productivity of irrigation systems, while reducing overall water usage. In order to address the requirements of increased efficiency and productivity in agricultural water use, the agricultural community has begun to focus on the development of precision agriculture (PA) irrigation management systems for use with irrigated agriculture. Remote sensing (RS) is at the forefront of the PA movement, allowing the estimation of spatially distributed crop water requirements on a large-scale basis. Techniques using ground, aerial and space-borne RS platforms, have been developed to estimate actual crop evapotranspiration (ETa) and soil water deficit (SWD) for use in PA irrigation management systems. The ability to monitor the ET a and SWD allows irrigators to manage their irrigation to increase efficiency and decrease overall water use while maintaining crop yields goals. Historically, remote sensing data, such as spectral reflectance and thermal infrared (TIR) imagery, were provided by ground or space-borne RS platforms, like NASA's Landsat 8 satellites. Though these methods are effective at estimating ET a over large areas, their lack of spatial and temporal resolution limit their effectiveness for application in PA irrigation management systems. In order to address the required spatial and temporal resolutions required for PA systems, Colorado State University (CSU) developed an unmanned aircraft system (UAS) RS platform capable of collecting high spatial and temporal resolution data in the TIR, near-infrared (NIR), red and green bands of the electromagnetic spectrum. During the summer of 2015, CSU conducted four flights over corn at the Agriculture Research Development and Education Center (ARDEC), near Fort Collins, CO, with the Tempest UAS RS platform in order to collect thermal and multispectral imagery. The RS data collected over the ARDEC test location were used in three studies. The first was the comparison of the raw RS data to the ground-based RS data collected during the RS overpasses. The second study used the Tempest RS data to estimate the ETa using four methods: two methods based on the surface energy balance (Two-Source Energy Balance (TSEB) and the Surface Aerodynamic Temperature (SAT)), one method based on the TIR imagery (Crop Water Stress Index (CWSI)), and one method based on the spectral reflectance imagery (reflectance-based crop coefficients (k cbrf)) and reference ET. Remote sensing derived ET a estimates were compared to ETa derived using neutron probe soil moisture sensors. The third study utilized the RS derived ETa and the Hybrid Soil Water Balance method to estimate the SWD for comparison with the neutron probe derived SWD. Results showed that the Tempest RS data was in good agreement with the ground-based data as demonstrate by the low RMSE of the raw data, ETa and SWD calculations (TIR = 5.68 °C, NIR = 5.26 % reflectance, red = 3.51 % reflectance, green = 7.31 % reflectance, TSEB ETa = 0.89 mm/d, Hybrid SWD = 16.19 mm/m). The accuracy of the results of the Tempest UAS RS platform suggests that UAS RS platforms have the potential to increase the accuracy of ETa¬ and SWD estimation for use in the application of a PA irrigation management system.
机译:灌溉是淡水的最大消耗国,占世界粮食和纤维供应的40%以上。随着世界人口继续快速增长,对淡水的需求增加将迫使农业界提高灌溉系统的效率和生产力,同时减少总用水量。为了满足提高农业用水效率和生产率的要求,农业界已开始致力于发展用于灌溉农业的精确农业(PA)灌溉管理系统。遥感(RS)处于PA行动的最前沿,可以大规模估算空间分布的作物需水量。已经开发出使用地面,空中和星载RS平台的技术,以估算用于PA灌溉管理系统的实际作物蒸散量(ETa)和土壤水分亏缺(SWD)。监视ET a和SWD的能力使灌溉者能够管理灌溉,以提高效率并减少总体用水量,同时保持作物单产的目标。从历史上看,遥感数据(例如光谱反射率和热红外(TIR)图像)是由地面或星载RS平台(例如NASA的Landsat 8卫星)提供的。尽管这些方法可有效估计大面积的ET,但它们缺乏时空分辨率限制了其在PA灌溉管理系统中应用的有效性。为了解决PA系统所需的空间和时间分辨率,科罗拉多州立大学(CSU)开发了一种无人飞行器系统(UAS)RS平台,该平台能够在TIR,近红外(NIR)中收集高空间和时间分辨率数据,电磁频谱的红色和绿色波段。在2015年夏季,CSU使用Tempest UAS RS平台在科罗拉多州科林斯堡附近的农业研究发展与教育中心(ARDEC)进行了四次玉米飞行,目的是收集热成像和多光谱图像。在ARDEC测试地点收集的RS数据用于三项研究。首先是将原始RS数据与在RS立交期间收集的地面RS数据进行比较。第二项研究使用Tempest RS数据通过四种方法估算ETa:两种基于表面能平衡的方法(两源能量平衡(TSEB)和表面空气动力学温度(SAT)),一种基于TIR图像的方法(作物水分胁迫指数(CWSI)),以及一种基于光谱反射率图像(基于反射率的作物系数(k cbrf))和参考ET的方法。遥感得出的ET a估计值与使用中子探针土壤湿度传感器得出的ETa进行了比较。第三项研究利用RS得出的ETa和混合土壤水平衡法估算了SWD,以便与中子探针得出的SWD进行比较。结果表明,Tempest RS数据与地面数据非常吻合,原始数据的RMSE低,ETa和SWD计算值低(TIR = 5.68°C,NIR = 5.26%反射率,红色= 3.51%反射率)证明了这一点。 ,绿色=反射率7.31%,TSEB ETa = 0.89 mm / d,混合SWD = 16.19 mm / m)。 Tempest UAS RS平台的结果的准确性表明,UAS RS平台具有提高用于PA灌溉管理系统的ETa和SWD估算准确性的潜力。

著录项

  • 作者

    Hathaway, Jeffrey Calvin.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Civil engineering.;Agricultural engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号