首页> 外文学位 >Constitutive modeling and optimal design of polymeric foams for crashworthiness.
【24h】

Constitutive modeling and optimal design of polymeric foams for crashworthiness.

机译:聚合物泡沫的本构模型和最佳设计,以提高耐撞性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation contains work on polymeric foam phenomenological constitutive modeling, numerical implementation, microscopic deformation analysis and optimal design of polymeric cellular structures. The constitutive models are implemented as material subroutines in the explicit finite element program LS-DYNA3D for vehicle crashworthiness numerical simulation. The polymeric foams include polyurethane (PU) foams, polystyrene (PS) foams, and polypropylene (PP) foams. Results from this work will provide essential knowledge for the analysis and design of prototype motor vehicle impact energy management systems. Comprehensive experiment on these polymeric foams has been conducted by the Material Research Lab of the Department of Civil and Environment Engineering. The experimental results have been reviewed in this dissertation for the material constitutive modeling. The testing modes include: (1) uniaxial compression, (2) simple shear, and (3) hydrostatic compression. Focus has been placed on strain rate and temperature sensitivities. The deformation is applied up to 80% volumetric strain. The strain rate ranges from quasi-static to dynamic. Temperature ranges from {dollar}-{dollar}20{dollar}spcirc{dollar}C to 80{dollar}spcirc{dollar}C. Procedures for numerical implementation are discussed in detail. Numerical examples are presented to validate the material constitutive model. In this research, a self-consistent microstructure-based constitutive modeling technique is also presented. The numerical procedure is based on the homogenization method for periodic composites. The representative volume element modeling is aided by using an image-based fixed-grid finite element method. Numerical examples are presented for linear elastic and nonlinear elasto-plastic problems. Finally, a design optimization method based on homogenization theory for optimal polymeric foam composite structures is introduced. The maximization of structural mean stiffness by redistributing reinforcement material results in a structure with many meso-scale perforations. Polymeric foam may fill these holes to improve the stability of perforated structure. Further, the composition of meso-scale reinforcement and polymeric foam filler provides good static load bearing and hydrodynamic crashworthiness capabilities.
机译:本论文主要研究了聚合物泡沫的现象学本构模型,数值实现,微观形变分析和聚合物孔结构的优化设计。本构模型在显式有限元程序LS-DYNA3D中作为材料子例程实现,用于车辆耐撞性数值模拟。聚合物泡沫包括聚氨酯(PU)泡沫,聚苯乙烯(PS)泡沫和聚丙烯(PP)泡沫。这项工作的结果将为原型汽车碰撞能量管理系统的分析和设计提供基本知识。土木与环境工程系的材料研究实验室已对这些聚合物泡沫进行了全面的实验。本文对材料的本构模型进行了实验研究。测试模式包括:(1)单轴压缩,(2)简单剪切和(3)静水压缩。重点放在应变率和温度敏感性上。施加最大80%的体积应变。应变率从准静态到动态。温度范围为{dollar}-{dollar} 20 {dollar} spcirc {dollar} C至80 {dollar} spcirc {dollar} C。详细讨论了数值实现的过程。数值例子验证了材料的本构模型。在这项研究中,还提出了一种基于自一致的微观结构的本构建模技术。数值过程基于周期性复合材料的均质化方法。通过使用基于图像的固定网格有限元方法来辅助具有代表性的体积元建模。给出了线性弹性和非线性弹塑性问题的数值示例。最后,介绍了一种基于均质化理论的聚合物泡沫复合材料结构优化设计方法。通过重新分配增强材料来使结构平均刚度最大化,从而使结构具有许多中尺度的孔眼。聚合物泡沫可以填充这些孔,以改善穿孔结构的稳定性。此外,中尺度增强剂和聚合物泡沫填料的组合物提供了良好的静载荷承受能力和流体动力耐撞性。

著录项

  • 作者

    Zhang, Jun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.; Engineering Automotive.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术及设备;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号