首页> 外文学位 >Development of novel techniques to study the magnetic field evolution in wire array Z-pinches and X pinches.
【24h】

Development of novel techniques to study the magnetic field evolution in wire array Z-pinches and X pinches.

机译:研究线阵列Z夹和X夹中的磁场演化的新技术的发展。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the magnetic field topology in wire-array Z-pinches is of great significance for their ultimate application to stockpile stewardship and inertial confinement fusion. We have developed and tested several novel techniques involving material-based sensors to measure magnetic fields as a function of space and time in high energy density plasmas on pulsed power machines. We first briefly introduce a technique that was used to measure a lower limit of the maximum magnetic field of a sub-microsecond duration pulse using magnetic reversal in CoPt thin films. The time-varying magnetic field was generated by an exploding wire array plasma called an X pinch produced on the 0.5 MA, 100 ns pulse duration, XP pulsed power generator. We then introduce a technique based on Faraday rotation that was used to measure magnetic fields in wire-array Z-pinches produced on the 1 MA, 100 ns rise time, COBRA pulsed power generator as well as on the XP generator. This technique measures magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide, multicomponent terbium borate glass, placed adjacent to, or within, the wire array. We have measured fields > 10 T with 100 ns rise times outside of a wire-array Z-pinch for the entire duration (∼250 ns) of the current pulse and as much as ∼2 T inside a wire-array for ∼40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using the terbium borate glass. The third method, also based on Faraday rotation of SLM laser light utilized an integrated optical fiber sensor (a fiber-sensor-fiber assembly) on the XP pulsed power generator that also yielded a measurement of the magnetic field of a wire-array Z-pinch for part of the current pulse. Finally, we repeated the third method by fabricating a "thin film waveguide" of terbium borate glass to increase the spatial resolution of the measurement. The thin film waveguide was then coupled to an optical fiber system. Although we successfully fabricated thin film nanowaveguides of terbium borate glass, the first time such waveguides have been made, due to poor coupling efficiency of light between components, preliminary Faraday rotation measurements were unsuccessful. The technique developed in this dissertation is potentially viable for magnetic field measurements in high current pulsed power systems if the device is protected from intimate interaction with the high energy density plasma during the time that a magnetic field measurement is to be made.
机译:了解线阵Z型夹点中的磁场拓扑结构对于将其最终应用于库存管理和惯性约束融合具有重要意义。我们已经开发并测试了几种新颖的技术,其中包括基于材料的传感器,这些技术可在脉冲功率机上测量高能密度等离子体中磁场随时间和空间的变化。我们首先简要介绍一种技术,该技术用于通过CoPt薄膜中的磁反转来测量亚微秒持续时间脉冲的最大磁场的下限。时变磁场是由在0.5 MA,100 ns脉冲持续时间,XP脉冲功率发生器上产生的称为X夹点的爆炸线阵列等离子体产生的。然后,我们介绍一种基于法拉第旋转的技术,该技术用于测量在1 MA,上升时间100 ns,COBRA脉冲发电机以及XP发电机上产生的线阵Z形夹中的磁场。该技术使用单个纵向模式(SLM)激光的法拉第旋转通过磁光有源体波导,多组分硼酸rate玻璃(与线阵列相邻或放置在其中)来测量磁场随时间和空间的变化。我们测量了大于10 T的场,在整个电流脉冲持续时间(〜250 ns)内,在线阵列Z夹捏之外的上升时间为100 ns,在线阵列内部约40 ns内,测量的场强为〜2 T从当前开始。这是第一次使用硼酸钡玻璃测量如此快速变化的大场。第三种方法,也是基于SLM激光的法拉第旋转,在XP脉冲式发电机上使用了集成的光纤传感器(光纤传感器-光纤组件),该传感器还可以测量线阵列Z-的磁场捏部分电流脉冲。最后,我们通过制造硼酸by玻璃的“薄膜波导”来重复第三种方法,以提高测量的空间分辨率。然后将薄膜波导耦合到光纤系统。尽管我们成功地制造了硼酸bo玻璃的薄膜纳米波导,但由于组件之间的光耦合效率差,因此首次制作了这种波导,但是法拉第旋转的初步测量还是失败了。如果在进行磁场测量的过程中保护了该设备免于与高能量密度等离子体的紧密相互作用,则本论文开发的技术可能适用于大电流脉冲功率系统中的磁场测量。

著录项

  • 作者

    Syed, Wasif.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Physics Optics.;Engineering Materials Science.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号