首页> 外文学位 >Processing, microstructures, and properties of Cu-Fe nanocomposites.
【24h】

Processing, microstructures, and properties of Cu-Fe nanocomposites.

机译:Cu-Fe纳米复合材料的加工,微结构和性能。

获取原文
获取原文并翻译 | 示例

摘要

A new route has been developed to produce full-density, bulk, two-phase nanocomposites. Nanocrystalline, single-phase, fcc or bcc Cu{dollar}sb{lcub}rm 100-x{rcub}{dollar}Fe{dollar}sb{lcub}rm x{rcub}{dollar} (x = 0 to 100) solid solution precursors were obtained by mechanical alloying of Cu and Fe at room temperature or liquid nitrogen temperature. These supersaturated solid solutions were decomposed on nanoscale upon hot consolidation, forming Cu-Fe two-phase nanocomposites in situ. Fully dense composite specimens have been obtained using either unconstrained or constrained sinter forging for the entire composition range (x = 0 to 100). The microstructures of the consolidated nanocomposites at representative second-phase volume fractions (x = 60, 85, 100) were characterized using transmission electron microscopy. The Cu and Fe phase domains and their distributions were analyzed using energy dispersive X-ray spectroscopy with a focused electron beam. The average domain/grain sizes of Cu and Fe observed were well below 100 nm, confirming the formation of nanocomposites. Alloying on the atomic scale to ensure uniform mixing of the two elements in the precursor was found to be important for obtaining homogeneous microstructure and nanophase grain/domain size in the consolidated product. The full density nanocomposites exhibited microhardness well above the rule-of-mixtures estimates obtained using nanophase Cu and Fe as constituent phases. It is concluded that microstructures, rather than the phase volume fractions alone, determine the mechanical behavior of the composite. A modified rule of mixtures is used to explain the microhardness observed in terms of the geometric arrangements of the two phases and the effect of interphase boundaries as efficient dislocation barriers. Other possible contributions due to solid solution hardening, precipitation hardening, and dispersion hardening are also discussed.
机译:已开发出一条新的路线来生产全密度,块状两相纳米复合材料。纳米晶,单相,FCC或BCC Cu {dollar} sb {lcub} rm 100-x {rcub} {dollar} Fe {dollar} sb {lcub} rm x {rcub} {dollar}(x = 0至100)通过在室温或液氮温度下机械合金化铜和铁获得固溶体前驱体。这些过饱和的固溶体在热固结后会在纳米尺度上分解,从而原位形成Cu-Fe两相纳米复合材料。在整个成分范围内(x = 0至100),使用无约束或受约束的烧结锻造可以得到完全致密的复合材料试样。使用透射电子显微镜表征了具有代表性的第二相体积分数(x = 60、85、100)的固结纳米复合材料的微观结构。使用聚焦电子束的能量色散X射线光谱分析了Cu和Fe的相域及其分布。观察到的Cu和Fe的平均畴/晶粒尺寸远低于100nm,证实了纳米复合材料的形成。发现在原子尺度上合金化以确保前体中两种元素的均匀混合对于在固结产品中获得均匀的微观结构和纳米相晶粒/畴尺寸非常重要。全密度纳米复合材料表现出的显微硬度远高于使用纳米相Cu和Fe作为组成相获得的混合规则估计值。结论是,微结构而不是仅由相体积分数决定了复合材料的机械性能。修改后的混合物规则用于根据两相的几何排列以及作为有效位错障碍的相间边界的影响来解释观察到的显微硬度。还讨论了由于固溶硬化,沉淀硬化和分散硬化而引起的其他可能的贡献。

著录项

  • 作者

    He, Li.;

  • 作者单位

    Louisiana State University and Agricultural & Mechanical College.;

  • 授予单位 Louisiana State University and Agricultural & Mechanical College.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号