首页> 外文学位 >Probing the role of surface oxygen in catalytically relevant reactions on Mo(110) and oxygen-modified Mo(110).
【24h】

Probing the role of surface oxygen in catalytically relevant reactions on Mo(110) and oxygen-modified Mo(110).

机译:探究表面氧在Mo(110)和氧修饰的Mo(110)的催化相关反应中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The studies reported herein utilize a variety of surface science techniques to investigate the role of surface oxygen in catalytically important reactions--specifically, partial oxidation of alkanes and reduction of nitric oxide--on single crystal Mo(110). By varying oxidation protocols we vary not only the coordination sites occupied by atomic oxygen but also the overall extent of surface oxidation, thus addressing fundamental aspects of the chemistry of MoO{dollar}sb3{dollar}-based catalysts. The complementary surface vibrational techniques of high-resolution electron energy loss spectroscopy and infrared reflectance absorbance spectroscopy allow identification of atomic and molecular surface intermediates formed en route to evolution of gas-phase products identified via temperature programmed reaction.; Oxygen coordination site is found to influence alkane oxidation markedly, since gas-phase methyl radicals add preferentially to oxygen in high-coordination, low-symmetry sites to form surface methoxy. Studies of methoxy formed via methanol reaction on oxygen-modified Mo(110) demonstrate that the subsequent reactivity of this intermediate depends strongly on the overall extent of surface oxidation, with the formation of surface oxygen vacancies dominating irreversible methanol reaction on more highly oxidized Mo(110). The unique reactivity of methoxy on oxygen-modified Mo(110) (homolytic C-O bond scission to evolve methyl radicals), as compared to its reaction on the clean surface, is attributed to a decrease in the facility for dehydrogenation on the oxygen-covered surfaces, rather than to significant changes in the C-O bond potential with increasing surface oxidation.; Infrared spectroscopy reveals coupling of nitric oxide (NO) molecules through a dinitrosyl intermediate on Mo(110), found to lead to nitrous oxide (N{dollar}sb2{dollar}O) and some dinitrogen formation at low temperature. Surface oxygen favors NO desorption over NO reduction, with distinct mononitrosyl species correlated with increasingly higher-temperature NO desorption features as surface oxidation is increased. The conversion of some of these nitrosyls to dinitrosyls is observed with infrared spectroscopy on a surface oxygen overlayer of {dollar}sim{dollar}0.75 ML. On highly oxidized Mo(110), infrared spectroscopy provides evidence for the formation of a perturbed condensed-phase-type NO dimer, evidence for another pathway to NO coupling on transition metal surfaces. Finally, the interaction of surface-bound NO with gas-phase methyl radicals is studied to identify potential pathways for NO reduction by methane.
机译:本文报道的研究利用了多种表面科学技术来研究表面氧在单晶Mo(110)上的重要催化反应中的作用-特别是烷烃的部分氧化和一氧化氮的还原。通过改变氧化方案,我们不仅改变了原子氧占据的配位点,而且改变了表面氧化的整体范围,从而解决了基于MoO {sb3 sb3 {dollar}的催化剂的化学基本方面。高分辨率电子能量损失谱和红外反射吸收光谱的互补表面振动技术可以鉴定通过程控反应鉴定出的气相生成过程中形成的原子和分子表面中间体。发现氧配位点显着影响烷烃氧化,因为气相甲基自由基优先于高配位,低对称位点中的氧添加形成表面甲氧基。通过甲醇在氧修饰的Mo(110)上反应形成的甲氧基的研究表明,该中间体的后续反应性很大程度上取决于表面氧化的总体程度,表面氧空位的形成主导着在更高氧化度的Mo(不可逆的甲醇反应上) 110)。与它在干净的表面上反应相比,甲氧基在氧修饰的Mo(110)上的独特反应性(同质的CO键断裂产生甲基自由基)是由于其在被氧气覆盖的表面上进行脱氢反应的设施减少所致,而不是随着表面氧化的增加而使CO键电位发生显着变化。红外光谱揭示一氧化氮(NO)分子通过Mo(110)上的二亚硝酰基中间体偶联,发现可导致一氧化二氮(N {dollar} sb2 {dollar} O)和一些二氮在低温下形成。表面氧比NO还原更有利于NO解吸,随着表面氧化的增加,独特的单亚硝酰基物质与温度升高的NO解吸特征相关。用红外光谱法在{sim dol 0.75 ML的表面氧覆盖层上观察到其中一些亚硝酰基向二亚硝酰基的转化。在高度氧化的Mo(110)上,红外光谱提供了扰动的冷凝相型NO二聚体形成的证据,这是过渡金属表面上NO偶联的另一种途径的证据。最后,研究了表面结合的NO与气相甲基自由基的相互作用,以确定甲烷还原NO的潜在途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号