首页> 外文学位 >Ecosystem analysis of water column processes in the York River estuary, Virginia: Historical records, field studies and modeling analysis.
【24h】

Ecosystem analysis of water column processes in the York River estuary, Virginia: Historical records, field studies and modeling analysis.

机译:弗吉尼亚州约克河河口水柱过程的生态系统分析:历史记录,现场研究和模型分析。

获取原文
获取原文并翻译 | 示例

摘要

Analyses of EPA long-term datasets (1985–1994) combined with field studies and ecosystem model development were used to investigate phytoplankton and nutrient dynamics in the York River estuary. Analysis of the EPA dataset showed that algal blooms occurred during winter-spring followed by smaller summer blooms. Peak phytoplankton biomass during the winter-spring blooms occurred in the mid reach of the mesohaline zone whereas during the summer bloom it occurred in the tidal fresh-mesolialine transition zone. River discharge appears to be the major factor controlling the location and timing of the winter-spring blooms and the relative degree of potential nitrogen (N) and phosphorus (P) limitation. Phytoplankton biomass in tidal fresh water regions was limited by high flushing rates. Water residence time was less than cell doubling rate during seasons of high river flow. Positive correlations between PAR at 1m depth and chlorophyll a suggested light limitation of phytoplankton in the tidal fresh-mesohaline transition zone. A significant relationship between the delta of salinity between surface and bottom water and chlorophyll a distribution suggested the importance of tidal mixing for phytoplankton dynamics in the mesohaline zone. Accumulation of phytoplankton biomass in the mesohaline zone was generally controlled by N with the nutrient supply provided by benthic or bottom water remineralization. In general, phytoplankton dynamics appear controlled to a large extent by resource limitation (bottom-up control) rather than zooplankton grazing (top-down control).; The dynamics of phytoplankton size structure were investigated in the freshwater, transitional and estuarine reaches of the York River over an annual cycle. The contribution of large cells (micro-plankton, >20 μm) to total biomass increased downstream during winter whereas that of small cells (nano-, 3–20 μm) pico-plankton, 3 μm) increased downstream during summer. I conclude from these studies that spatial and seasonal variations in size structure of phytoplankton observed on the estuarine scale are determined both by the different preferences of micro-, nano-, and picoplankton for nutrients and by their different light requirements. Analyses of phytoplankton size structure are, thus, necessary to better understand phytoplankton dynamics and to better manage water quality in estuarine systems.; An ecosystem model was developed to integrate these data and to investigate mechanisms controlling the size-structured phytoplankton dynamics in the mesohaline zone of the York River estuary. The model developed in Fortran90 included 12 state variables describing the distribution of carbon and nutrients (nitrogen, phosphorus) in the surface mixed layer. Forcing functions included incident radiation, temperature, wind stress, mean flow and tide including advective transport and turbulent mixing. Model results supported the general view that phytoplankton dynamics are controlled by abiotic mechanisms (i.e. bottom-up control) rather than biotic, trophic interactions in the York River estuary. Model sensitivity tests showed that small cells (pico-, nano-sized) are more likely regulated by temperature and light whereas large cells (micro-sized) are regulated by physical processes such as advection, and tidal mixing. Microphytoplankton blooms during winter- pring resulted from a combination of longitudinal advection and vertical diffusion of phytoplankton cells rather than in-situ production.
机译:将EPA长期数据集(1985-1994年)与野外研究和生态系统模型开发相结合,对约克河河口的浮游植物和养分动态进行了研究。 EPA数据集的分析表明,冬春季期间发生藻华,随后夏季夏季较小。冬春季盛花期的浮游植物生物量峰值出现在中咸淡水带的中游,而夏季盛花期的浮游植物生物量则出现在潮间带-新鲜间苯二酚过渡带。河流流量似乎是控制冬春季花的位置和时间以及潜在的氮(N)和磷(P)限制的相对程度的主要因素。潮汐淡水地区的浮游植物生物量受到冲洗率高的限制。在河流流量高的季节,水的停留时间少于细胞倍增率。 1m深度的PAR与叶绿素 a 之间呈正相关,这表明潮汐新鲜间卤过渡带的浮游植物受到光的限制。地表水和底水之间的盐度变化与叶绿素的 a 分布之间存在显着的关系,这表明潮汐混合对中盐度区浮游植物动力学的重要性。中卤盐带中浮游植物生物量的积累通常由氮控制,底栖或底水再矿化提供养分。通常,浮游植物的动力学在很大程度上受资源限制(自下而上的控制)而不是由浮游动物的放牧(自上而下的控制)控制。一年周期内,在约克河的淡水,过渡河口和河口对浮游植物大小结构的动力学进行了研究。在冬季,大细胞(浮游生物,> 20μm)对总生物量的贡献在下游增加,而小细胞(纳米浮游生物,在3–20μm),<3μm)在夏季下游增加。从这些研究中,我得出的结论是,在河口尺度上观察到的浮游植物大小结构的空间和季节变化,既取决于微米,纳米和微微浮游植物对养分的不同偏好,也取决于它们对光的不同需求。因此,有必要对浮游植物的大小结构进行分析,以更好地了解浮游植物的动态并更好地管理河口系统中的水质。开发了一个生态系统模型来整合这些数据,并研究控制约克河河口中卤带中规模结构浮游植物动力学的机制。在Fortran90中开发的模型包括12个状态变量,描述了表面混合层中碳和养分(氮,磷)的分布。强迫函数包括入射辐射,温度,风应力,平均流量和潮汐,包括对流传输和湍流混合。模型结果支持了这样一种普遍观点:浮游植物的动力学受非生物机制(即自下而上的控制)控制,而不是由约克河口的生物,营养相互作用控制。模型敏感性测试表明,较小的细胞(皮克级,纳米级)更可能受温度和光的调节,而较大的细胞(微米级)则受对流和潮汐混合等物理过程的调节。浮游植物在冬季越冬,是由于浮游植物细胞的纵向对流和垂直扩散而不是就地生产所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号