首页> 外文学位 >An integrated approach to hierarchical planning, plan execution, and on-line learning in uncertain continuous domains.
【24h】

An integrated approach to hierarchical planning, plan execution, and on-line learning in uncertain continuous domains.

机译:在不确定的连续域中进行分层计划,计划执行和在线学习的集成方法。

获取原文
获取原文并翻译 | 示例

摘要

Classical planning systems reason in abstract domains, ignoring many of the issues which complicate realistic applications. These issues must be addressed when implementing a practical planning system in a real-world application. This dissertation develops and analyzes an integrated approach to planning, plan-execution, and learning in a class of complex domains, motivated by the need to perform mission planning and intelligent control of an autonomous Hybrid Electric Vehicle (HEV).; The planning problem is formally defined in a function-based framework which models plan execution as a Markov process in a general state space. A domain taxonomy is proposed which classifies planning domains based on their complexity and the presence of uncertainty. Novel issues within each domain class are analyzed, emphasizing uncertain continuous (UC) domains. Planning in UC domains requires the ability to react to unexpected plan-execution scenarios caused by significant domain uncertainty. Planning systems from the literature are analyzed under the proposed domain taxonomy.; This analysis leads to specification of RIPPELS, the Real-time Integrated Planning, Plan-Execution, and Learning System. RIPPELS consists of 3 domain-independent subsystems, which perform planning, plan execution, and learning. These subsystems interact in a way that leads to robust planning and plan execution in UC domains. RIPPELS was developed to confirm the hypothesis that planning performance and plan quality can be improved by incorporating a learning capability when planning in UC domains.; RIPPELS performs on-line, hierarchical, nonlinear, least-commitment planning subject to resource constraints and an explicit utility function. An execution monitor detects unexpected situations, to which the system may respond by replanning. RIPPELS also monitors the accuracy of its domain-models. Inaccurate domain models represent learning opportunities. Such opportunities are identified on-line and addressed by the learning subsystem, to improve domain-model accuracy based on the observed state during plan execution. Learning is represented as function approximation.; Simulation experiments confirmed that the combination of replanning and learning capabilities leads to improved planning efficiency and plans of higher utility. These experiments used RIPPELS to perform energy management and route-planning for an autonomous HEV.
机译:传统的计划系统在抽象领域中进行推理,而忽略了使现实应用复杂化的许多问题。在实际应用中实施实际的计划系统时,必须解决这些问题。本文以执行混合动力汽车的任务计划和智能控制为需要,开发和分析了在复杂领域中进行计划,计划执行和学习的综合方法。计划问题是在基于功能的框架中正式定义的,该框架将计划执行建模为一般状态空间中的马尔可夫过程。提出了一种领域分类法,该分类法根据规划领域的复杂性和不确定性的存在来对其进行分类。分析每个领域类别中的新颖问题,强调不确定的连续(UC)领域。在UC域中进行规划需要具有对由于领域不确定性导致的意外计划执行方案做出反应的能力。在建议的领域分类法下,对文献中的计划系统进行了分析。该分析得出RIPPELS,实时集成计划,计划执行和学习系统的规范。 RIPPELS由3个独立于域的子系统组成,这些子系统执行计划,计划执行和学习。这些子系统的交互方式可导致在UC域中进行可靠的计划和计划执行。开发RIPPELS是为了证实以下假设:在UC域中进行规划时,可以通过合并学习功能来提高规划绩效和规划质量。 RIPPELS会根据资源约束和明确的效用函数执行在线,分层,非线性,最少承诺的计划。执行监视器检测到意外情况,系统可能会通过重新计划对其做出响应。 RIPPELS还监视其域模型的准确性。不正确的领域模型代表学习机会。在线识别并由学习子系统解决这些机会,以根据计划执行期间的观察状态来提高领域模型的准确性。学习表示为函数逼近。仿真实验证实,重新计划和学习能力的结合可以提高计划效率,提高计划的实用性。这些实验使用RIPPELS来执行自主HEV的能源管理和路线规划。

著录项

  • 作者

    Berger, Torsten.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Computer Science.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 324 p.
  • 总页数 324
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号