首页> 外文学位 >Free and friction-induced in-plane vibration of annular disks.
【24h】

Free and friction-induced in-plane vibration of annular disks.

机译:圆盘的自由摩擦引起的平面内振动。

获取原文
获取原文并翻译 | 示例

摘要

Vibration and noise from disk brakes negatively affect passenger comfort and perceptions of quality in both the automotive and aircraft industries. With regulatory pressure for stopping distance and the emphasis on smaller and lighter components, new brakes not only have to meet design and performance requirements, but must minimize vibration as well. Although materials and geometries vary from application to application, disk brakes generally consist of rotating annular disk(s) subjected to in-plane friction which dissipates the kinetic energy of the vehicle. During this process, friction-induced vibration of the disk(s) occurs, resulting in brake noise. Although sound radiation results from a disk's out-of-plane vibration, substantial in-plane motions must also be present due to the in-plane friction. This in-plane vibration can play a key role in the dynamics of the friction interface and hence, in brake noise and vibration.; In this thesis, experimental and analytical methods are used to study the in-plane vibration of annular disks with a view toward understanding disk brake vibration. The issues that are addressed and the major findings include: (1) Characterization of in-plane modes in annular disks. For automotive rotors and thick annular disks, in-plane modes of vibration have frequencies that are both comparable to low-order bending modes and within the measured range for brake squeal. Despite the large in-plane friction force provided by disk brakes, no existing model includes in-plane disk motion with in-plane friction. A three-dimensional vibration model is used to determine frequencies and mode shapes for an annular disk subject to two boundary conditions: all surfaces traction-free, and all free except for a constrained inner edge. (2) Identification of frequency clusters. Using experimental and analytical methods, the frequencies for families of in-plane modes are found to converge to a common value with increasing disk thickness to the limit of the disk becoming a long “cylinder.” Consequently, these modes have frequencies that are indistinguishable at a given experimental or numerical resolution, despite having different numbers of axial nodes. The steady-state harmonic response at frequencies near the cluster can have spatially confined displacements which decay rapidly away from the point of maximum response. (3) Simulation of braking events. The vibration of an automotive disk brake is modeled by a thick annular disk subjected to in-plane friction distributed over a sector of the disk's two faces. The response of the disk is obtained through modal analysis where three-dimensional mode shapes are used to discretize the forced response. In transient simulations of a braking event, the response of the disk can be characterized by three distinct phases: growth, linear decay and final decay. These phases originate from friction's role as an exciting mechanism, a dissipating mechanism, or both.
机译:盘式制动器产生的振动和噪声会对汽车和飞机行业的乘客舒适度和质量感产生负面影响。由于具有制止距离的法规压力,并且着重于更小和更轻的组件,因此,新型制动器不仅必须满足设计和性能要求,而且还必须使振动最小化。尽管材料和几何形状因应用而异,但是盘式制动器通常由经受面内摩擦的旋转环形盘组成,该平面内摩擦耗散了车辆的动能。在此过程中,会发生摩擦引起的磁盘振动,从而产生制动噪音。尽管声音辐射是由磁盘的平面外振动引起的,但是由于平面内摩擦,还必须存在大量的平面内运动。平面内振动在摩擦界面的动力学中起着关键作用,因此在制动噪声和振动中也起着关键作用。本文采用实验和分析方法研究环形盘的平面内振动,以期了解盘式制动器的振动。解决的问题和主要发现包括:(1)环形磁盘中平面模式的特征。对于汽车转子和厚环形盘,平面内振动模式的频率既可与低阶弯曲模式相比,又可在制动尖叫的测量范围内。尽管盘式制动器提供了较大的平面内摩擦力,但现有模型都没有包含具有平面内摩擦力的平面内盘运动。三维振动模型用于确定环形盘在两个边界条件下的频率和振型:所有表面无牵引力,除了受约束的内部边缘外,所有表面均无牵引力。 (2)频率簇的识别。使用实验和分析方法,发现随着平面厚度的增加,平面内模式族的频率收敛到一个共同的值,直到平面的极限变成一个长的“圆柱体”。因此,尽管具有不同数量的轴向节点,但这些模式的频率在给定的实验或数值分辨率下是无法区分的。群集附近频率处的稳态谐波响应可能具有空间受限的位移,该位移会从最大响应点迅速衰减。 (3)模拟制动事件。汽车盘式制动器的振动是通过一个厚的环形盘来模拟的,该盘受到分布在该盘的两个面的一个扇区上的平面内摩擦力。圆盘的响应是通过模态分析获得的,其中三维模式形状用于离散强制响应。在制动事件的瞬态模拟中,制动盘的响应可以通过三个不同的阶段来表征:增长,线性衰减和最终衰减。这些阶段源于摩擦的作用是激励机制,耗散机制或两者兼而有之。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号