首页> 外文学位 >Development of novel anodic and cathodic materials applied in proton exchange membrane, direct methanol, alkaline and phosphoric acid fuel cells.
【24h】

Development of novel anodic and cathodic materials applied in proton exchange membrane, direct methanol, alkaline and phosphoric acid fuel cells.

机译:用于质子交换膜,直接甲醇,碱性和磷酸燃料电池的新型阳极和阴极材料的开发。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation summarizes the author's research effort to identify and synthesize novel electrocatalysts for application in proton exchange membrane fuel cells (PEMFCs), direct alcohol (acid and alkaline) fuel cells (DAFCs) and phosphoric acid fuel cells (PAFCs).;Electrocatalysis enables modification of rates of electrochemical reactions to achieve maximum selectivity, yield and efficiency. It is an important chemical process during the operation of fuel cells. "Electrocatalysts" is a term in the field of Electrochemistry. In fuel cells, they are various metal-containing catalysts used to enhance the rates of the half reactions that comprise the fuel cell. The behavior of state-of-the-art Pt-based electrocatalysts highly depends on the composition (nominal composition, surface composition), structure, morphology, particle size, degree of alloying, and oxide content, among other properties.;The principle of "rule-of-thumb" has been utilized for a few decades to synthesize electrocatalysts. In this work, a microemulsion method was fully studied and taken advantage to control particle size, catalyst morphology, and crystalline shape as well as to form catalyst layers. This method accelerates the conversion of new materials synthesis from "art" to "science". As a typical example, synthesis of carbon supported PtCo using microemulsions, including simultaneous and sequential reduction procedures in both acid and alkaline media was reported. As-prepared PtCo/C catalysts showed better performance towards oxygen reduction reaction in PEMFC than commercial Pt/C catalyst. In addition, a carbon-supported PtAu alloy core with a Ru shell (PtAu Ru/C) catalyst was synthesized using a water-in-oil microemulsion method and heated at 220°C. It was found that gold cluster in the PtAu Ru/C catalyst improve the stability of Pt and Ru significantly by interacting with Pt and Ru to raise their oxidation potential, which is a promising step towards resolving the problem of Ru dissolution for the practical application of PtRu/C catalyst in direct methanol fuel cells.;Pt-based binary or ternary alloy (nano) materials are still dominant and irreplaceable electrocatalysts in the field of acid fuel cells. However, more choices are available for choosing materials as electrocatalysts for alkaline fuel cell. As a series of non-Pt materials, Pd based alloy nanoparticles were prepared by a chemical reduction method. Voltammetric and chronoamperometric measurements showed higher current density and longer-term stability for ethanol oxidation in high pH environments with palladium alloy nanocatalysts than with a commercial Pt/C catalyst. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd4Au/C displays the best catalytic activity among them for the ethanol oxidation in alkaline media.;Phosphoric acid fuel cells (PAFCs) have been commercialized successfully and used for stationary applications with a combined heat and power efficiency of about 80%. However, there is still a lot of room for improvements in this technology through further research and development. One major factor limiting the performance of PAFCs is the sluggish ORR kinetics in H3PO 4, which is attributed chiefly to the impeding effect of phosphate ion adsorption on ORR activity. In this study, a Pt based Ni alloy catalyst was synthesized in-house using components that may possess novel functions. Detailed electrochemical and X-ray absorption spectroscopy (XAS) investigations have been carried out on our electrocatalysts under in-situ conditions. Using the Deltamu-XANES analysis, it was found that despite being smaller than the Pt/C (E-TEK) catalysts, the Pt-Ni/C catalysts are less susceptible to PO43- anion adsorption/poisoning. To conclude, owing to lower susceptibility to poisoning by PO43- ions, the Pt-Ni catalysts can be expected to perform better than Pt/C (E-TEK) catalysts in a PAFC.
机译:本文总结了作者的研究工作,以鉴定和合成用于质子交换膜燃料电池(PEMFCs),直接醇(酸和碱)燃料电池(DAFCs)和磷酸燃料电池(PAFCs)的新型电催化剂。电化学反应速率以实现最大的选择性,产率和效率。这是燃料电池运行过程中的重要化学过程。 “电催化剂”是电化学领域的术语。在燃料电池中,它们是用于提高构成燃料电池的半反应速率的各种含金属催化剂。最先进的基于Pt的电催化剂的行为在很大程度上取决于其组成(标称组成,表面组成),结构,形态,粒度,合金化程度和氧化物含量以及其他特性。 “经验法则”已经被使用了几十年来合成电催化剂。在这项工作中,对微乳化方法进行了充分的研究,并利用其控制粒径,催化剂形态和晶体形状以及形成催化剂层。这种方法加速了新材料合成从“艺术”到“科学”的转化。作为一个典型的例子,报道了使用微乳液合成碳载PtCo的方法,包括在酸性和碱性介质中同时进行和顺序进行的还原程序。制备的PtCo / C催化剂在PEMFC中对氧还原反应的性能优于市售Pt / C催化剂。另外,使用油包水微乳液法合成了具有Ru壳的碳载PtAu合金芯(PtAu Ru / C)催化剂,并在220℃下加热。研究发现,PtAu Ru / C催化剂中的金团簇通过与Pt和Ru相互作用提高氧化电位,显着提高了Pt和Ru的稳定性,为解决Ru的溶解实际应用提供了有希望的一步。直接甲醇燃料电池中的PtRu / C催化剂。基于Pt的二元或三元合金(纳米)材料在酸性燃料电池领域仍然是占主导地位且不可替代的电催化剂。然而,有更多选择可用于选择材料作为碱性燃料电池的电催化剂。作为一系列非Pt材料,通过化学还原法制备了Pd基合金纳米颗粒。伏安法和计时安培法测量显示,在高pH环境中,使用钯合金纳米催化剂比使用商用Pt / C催化剂具有更高的电流密度和乙醇氧化的长期稳定性。总体而言,基于Pd的合金催化剂是乙醇电催化氧化的有希望的候选物,而Pd4Au / C在碱性介质中对乙醇的氧化显示出最好的催化活性。磷酸燃料电池(PAFC)已成功商业化并用于固定式应用,热电效率合计约为80%。但是,通过进一步的研究和开发,该技术仍有很大的改进空间。限制PAFC性能的一个主要因素是H3PO 4的ORR反应迟缓,这主要归因于磷酸盐离子吸附对ORR活性的阻碍作用。在这项研究中,使用可能具有新颖功能的组分在内部合成了基于Pt的Ni合金催化剂。在原位条件下,对我们的电催化剂进行了详细的电化学和X射线吸收光谱(XAS)研究。使用Deltamu-XANES分析发现,尽管Pt-Ni / C催化剂比Pt / C(E-TEK)催化剂小,但它对PO43-阴离子吸附/中毒的敏感性较小。总而言之,由于PO43离子对中毒的敏感性较低,因此可以预期Pt-Ni催化剂在PAFC中的性能优于Pt / C(E-TEK)催化剂。

著录项

  • 作者

    He, Qinggang.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 332 p.
  • 总页数 332
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号