首页> 外文学位 >Low-power and high-speed algorithms and VLSI architectures for error control coding and adaptive video scaling.
【24h】

Low-power and high-speed algorithms and VLSI architectures for error control coding and adaptive video scaling.

机译:用于错误控制编码和自适应视频缩放的低功耗,高速算法和VLSI架构。

获取原文
获取原文并翻译 | 示例

摘要

Fueled by the advances in VLSI technology, signal processing systems are now coming into widespread use. A common feature of these systems are the challenging design requirements. The objective may be to increase speed, reduce power consumption, minimize area, reduce latency or a combination of these factors. We consider the application of algorithm/architecture level transformations to meet VLSI design requirements in video communication systems. We consider three challenging problems with varying requirements—Reed-Solomon (RS) decoding, turbo-MAP (Maximum Aposteriori Probability) decoding and adaptive video scaling.; RS codes are used widely for error correction in communication systems. We consider the problem of developing a low-power RS decoder. We propose transformations to the Berlekamp algorithm using the multirate technique that leads to a low-power/high speed VLSI implementation. A VLSI design was developed to show that a 40% reduction in power or a speed-up of 1.34 can be obtained.; Turbo codes are parallel concatenated convolutional codes that have a performance close to the Shannon limit. Turbo decoding commonly uses the SOVA (Soft Output Viterbi Algorithm) or the MAP algorithm. When turbo-decoding is used in small block transmission systems, the computational latency can be a critical factor in the overall latency of decoding. We propose an algorithm that reduces the computational latency in log-MAP implementations. We also investigate the relative complexities of the SOVA, log-MAP and the proposed low-latency log-MAP.; One approach to video transmission over a bandwidth limited channel is to send a compressed spatially scaled-down version of the video. High performance up-scaling of the video at the receiving end requires the use of adaptive scaling techniques that were considered too complex. We propose an efficient VLSI architecture that meets the challenging throughput requirements in real time adaptive scaling. The target was to scale QCIF video to CIF/4CIF video at 30 frames/s. We showed that a single chip implementation of such a system was feasible by estimating the silicon area.; In general, we showed that irrespective of the specific algorithm, transformations that use the underlying properties of the algorithm are effective in helping meet the system design requirements.
机译:在VLSI技术的发展推动下,信号处理系统现已得到广泛使用。这些系统的共同特点是极富挑战性的设计要求。目标可能是提高速度,减少功耗,最小化面积,减少等待时间或这些因素的组合。我们考虑了算法/体系结构级别转换的应用,以满足视频通信系统中的VLSI设计要求。我们考虑了三个具有不同要求的挑战性问题:里德-所罗门(RS)解码,turbo-MAP(最大后验概率)解码和自适应视频缩放。 RS码被广泛用于通信系统中的纠错。我们考虑开发低功率RS解码器的问题。我们建议使用多速率技术转换为Berlekamp算法,从而实现低功耗/高速VLSI实现。开发了一种VLSI设计,表明可以将功耗降低40%或将速度提高1.34。 Turbo码是并行级联卷积码,其性能接近Shannon限制。 Turbo解码通常使用SOVA(软输出维特比算法)或MAP算法。在小块传输系统中使用Turbo解码时,计算延迟可能是解码总体延迟的关键因素。我们提出了一种减少log-MAP实现中的计算延迟的算法。我们还研究了SOVA,log-MAP和拟议的低延迟log-MAP的相对复杂性。通过带宽受限的信道进行视频传输的一种方法是发送视频的压缩的空间缩小版本。在接收端对视频进行高性能放大需要使用被认为过于复杂的自适应缩放技术。我们提出了一种高效的VLSI架构,该架构可以满足实时自适应缩放中具有挑战性的吞吐量要求。目标是以30帧/秒的速度将QCIF视频缩放为CIF / 4CIF视频。我们通过估计硅面积证明了这种系统的单芯片实施是可行的。通常,我们表明,不管使用哪种特定算法,使用算法基本属性的转换都可以有效地帮助满足系统设计要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号