首页> 外文学位 >Physiology, regulation, and pathogenesis of nitrogen metabolism in the opportunistic fungal pathogen Candida albicans.
【24h】

Physiology, regulation, and pathogenesis of nitrogen metabolism in the opportunistic fungal pathogen Candida albicans.

机译:机会性真菌病原体白色念珠菌中氮代谢的生理,调控和发病机理。

获取原文
获取原文并翻译 | 示例

摘要

Candida albicans is an opportunistic polymorphic fungus that causes clinically important disease candidiasis to humans. Being polymorphic Candida albicans can grow in yeast, hyphae, or pseudohyphae forms and the switch from one form to another is required for virulence. The morphological transitions from one phase to another are carefully orchestrated events which are regulated by several signal transduction pathways. Several environmental factors determine the morphology of the fungus Candida albicans. For example growth at lower temperature ~30 °C, in preferred nitrogen sources cause the fungus to grow as yeasts while at higher temperature ~37 °C and in poor nitrogen sources, in the presence of serum, N-acetyl glucosamine, or high CO2, Candida albicans cells grow as hyphae. Under several clinically relevant circumstances, including biofilms, Candida albicans cells encounter poor or low nitrogen conditions. In this project utilization of different nitrogen sources by Candida albicans was evaluated and their roles in pathogenesis were studied. The aromatic amino acids are metabolized when the Candida albicans cells grow under poor nitrogen conditions, and the resulting carbon skeletons are secreted outside the cell. They are well known as fusel oils or aromatic alcohols. The aromatic alcohol biosynthesis is enhanced under anaerobic conditions compared to aerobic conditions, by the presence of precursor amino acids (phenylalanine, tyrosine, or tryptophan), and in alkaline conditions compared to acidic conditions, but it is reduced greatly in the presence of ammonia. Also, aromatic alcohol yield is dependent on the transcription regulators Aro80p and Rim101p. In another project the role of arginine metabolism in the yeast to hypha morphological switch was studied. When Candida albicans cells enter the bloodstream, they first encounter macrophages and are engulfed by them. But in four to six hours Candida albicans cells form hyphae, penetrate and kill the macrophages, and get out in the bloodstream again. In this series of events at the initial phase, right after engulfment, Candida albicans up-regulates arginine biosynthesis. We found that arginine biosynthesis is critical for the fungus because it is metabolized and produces CO2 inside the cell, a signal important for the yeast to hypha switch. Candida albicans mutants that either failed to make arginine (arginine auxotrophs) or could not metabolize arginine to CO2 (urea amidolyase mutants) were defective in making germ tubes inside the macrophages. However, wild type Candida albicans and Candida albicans auxotrophic for other amino acids than arginine can kill macrophages within four to six hours after phagocytosis. So, another project studied if macrophages can induce appropriate cytokines within that short time span before being killed by Candida albicans. We found that after engulfing Candida albicans , macrophages induce cytokines within one hour. Chief among them were IL-6, IL-23, and TGF-beta, important for the development of the Th-17 subset of T cells. Finally, two major components of Candida albicans , the quorum sensing molecule farnesol and the cell wall component zymosan, together induced TLR2, a pattern recognition receptor, and both were responsible for the induction of IL-6, IL-23, and TGF-beta. Farnesol was ca. 100 times more effective than farnesoic acid at inducing these cytokines. Overall, this body of work has taken a major step towards elucidating farnesol's mode of action as a virulence factor and a lipid signaling molecule while at the same time highlighting the magnitude of the gaps remaining our knowledge.
机译:白色念珠菌是一种机会性多态性真菌,会对人类造成临床上重要的疾病念珠菌病。作为多态的白色念珠菌可以酵母,菌丝或假菌丝形式生长,毒力需要从一种形式转换为另一种形式。从一个阶段到另一个阶段的形态转变是精心策划的事件,这些事件由几种信号转导途径调节。几种环境因素决定了白色念珠菌的形态。例如,在〜30°C的较低温度下生长,在优选的氮源中,如果存在血清,N-乙酰氨基葡萄糖或高CO2,则真菌会作为酵母在高温下〜37°C且在氮源不足的情况下生长。 ,白色念珠菌细胞生长为菌丝。在包括生物膜在内的几种临床相关情况下,白色念珠菌细胞会遇到氮水平较低或较低的情况。在该项目中,评估了白色念珠菌对不同氮源的利用,并研究了它们在发病机理中的作用。当白色念珠菌细胞在恶劣的氮条件下生长时,芳香族氨基酸被代谢,并且所产生的碳骨架被分泌到细胞外。它们被称为杂醇油或芳族醇。与有氧条件相比,在有氧条件下,通过存在前体氨基酸(苯丙氨酸,酪氨酸或色氨酸),以及在酸性条件下,与酸性条件相比,芳香醇的生物合成得到增强,但是在有氨气的条件下,芳香醇的生物合成大大降低。同样,芳香醇的产量取决于转录调节子Aro80p和Rim101p。在另一个项目中,研究了精氨酸代谢在酵母中向菌丝形态转换的作用。当白色念珠菌细胞进入血液时,它们首先遇到巨噬细胞并被其吞噬。但是在四到六个小时内,白色念珠菌细胞会形成菌丝,穿透并杀死巨噬细胞,然后再次进入血液。在吞噬之后的最初阶段的一系列事件中,白色念珠菌上调了精氨酸的生物合成。我们发现精氨酸的生物合成对于真菌至关重要,因为它被代谢并在细胞内产生CO2,这对于酵母向菌丝的转换很重要。无法产生精氨酸的白念珠菌突变体(精氨酸营养缺陷型)或不能将精氨酸代谢成二氧化碳的尿素假丝酵母突变体在制造巨噬细胞内的胚管方面存在缺陷。然而,除了精氨酸以外的其他氨基酸的野生型白色假丝酵母和白色假丝酵母可以在吞噬作用后的四到六小时内杀死巨噬细胞。因此,另一个项目研究了巨噬细胞是否可以在被白色念珠菌杀死之前的短时间内诱导出适当的细胞因子。我们发现吞噬白色念珠菌后,巨噬细胞在一小时内诱导细胞因子。其中主要的是IL-6,IL-23和TGF-beta,它们对T细胞Th-17亚型的发育很重要。最后,白色念珠菌的两个主要成分,群体感应分子法尼醇和细胞壁成分zymosan,共同诱导了TLR2,一种模式识别受体,并且都负责诱导IL-6,IL-23和TGF-β。 。法尼醇是大约。在诱导这些细胞因子方面,其效率比法尼酸高100倍。总体而言,这项工作朝着阐明法尼醇作为毒力因子和脂质信号分子的作用方式迈出了重要一步,同时强调了我们所知道的差距的程度。

著录项

  • 作者

    Ghosh, Suman.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Biology Molecular.;Biology Microbiology.;Health Sciences Immunology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;预防医学、卫生学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号