首页> 外文学位 >An experimental investigation of thermal boundary layer structure and heat transfer in oscillating flows using CARS spectroscopy and cold -wire anemometry
【24h】

An experimental investigation of thermal boundary layer structure and heat transfer in oscillating flows using CARS spectroscopy and cold -wire anemometry

机译:CARS光谱和冷线风速仪对振荡流中热边界层结构和传热的实验研究

获取原文
获取原文并翻译 | 示例

摘要

Single-phase convective heat transfer enhancement is important in a variety of residential and industrial end-use energy applications. Convective heat transfer enhancement can be achieved by passive (no external energy input) or active (requiring external energy input) means. Use of heat-transfer enhancement techniques often introduces complexity into the physics of the flow and temperature fields. This additional complexity can require the introduction of advanced, non-intrusive diagnostics for acquisition of detailed experimental velocity and temperature data. In this thesis, an experimental investigation of active heat transfer enhancement through periodic, forced flow oscillations is undertaken. The focus is on measurement of the time-resolved temperature field using both non-intrusive (CARS) and conventional (cold-wire) techniques.;A dual-broadband, pure-rotational coherent anti-Stokes Raman scattering (CARS) apparatus is developed for the acquisition of non-intrusive temperature measurements in both steady and oscillating thermal boundary layers. To our knowledge, this is the first application of CARS to the study of convective heat transfer. Low-temperature convection measurements push the CARS technique to the limits of its precision, but the method is desirable due to its ability to provide non-intrusive, spatially resolved temperature data with rapid frequency response. CARS temperature measurements from a tripped steady flow and a laminar, oscillating boundary layer flow are presented. The CARS apparatus developed for these studies provides a precision of +/-4K, which is a significant improvement over the precision obtained in typical CARS combustion applications. Temperature data are acquired within 50 mum of the heat transfer surface allowing for non-intrusive estimates of the convective heat flux with a precision of +/-15--20%.;A conventional, cold-wire technique is used to provide a more detailed description of the time-resolved structure of a thermal boundary layer in the oscillating flow. The cold-wire technique provides for increased data acquisition rates relative to CARS, at the expense of an ambiguous, systematic error associated with the intrusive nature of the probe. The cold-wire technique is used to investigate oscillating boundary layer flows with differing degrees of periodic flow reversal. Local, time-averaged Nusselt number results for the oscillating flow are a factor of two higher than accepted values for a laminar, developing channel flow. Periodic flow reversal did not provide a heat transfer advantage relative to non-reversed oscillating flows.
机译:单相对流换热的增强在各种住宅和工业最终用途能源应用中很重要。对流传热的增强可以通过被动(无外部能量输入)或主动(需要外部能量输入)方式实现。传热增强技术的使用通常将复杂性引入流场和温度场的物理学。这种额外的复杂性可能要求引入高级的非侵入式诊断程序,以获取详细的实验速度和温度数据。本文通过周期性的强迫流动振荡进行主动传热的实验研究。重点是使用非侵入式(CARS)技术和常规(冷线)技术测量时间分辨温度场。;开发了一种双宽带,纯旋转相干反斯托克斯拉曼散射(CARS)装置用于获取稳定和振荡热边界层中的非侵入式温度测量值。据我们所知,这是CARS在对流传热研究中的首次应用。低温对流测量将CARS技术推向其精度极限,但是由于该方法能够提供具有快速频率响应的非介入式,空间分辨的温度数据,因此该方法是理想的。提出了从跳闸的稳定流和层流,振荡边界层流进行的CARS温度测量。为这些研究而开发的CARS设备可提供+/- 4K的精度,这是对典型CARS燃烧应用中获得的精度的重大改进。在传热表面的50微米范围内获取温度数据,从而可以非侵入性地估计对流热通量,精度为+/- 15--20%.;传统的冷线技术用于提供更多振荡流中热边界层的时间分辨结构的详细描述。冷线技术提供了相对于CARS更高的数据采集速率,但代价是与探头的侵入性相关的模棱两可的系统性错误。使用冷线技术研究具有不同周期性逆流程度的振荡边界层流。振荡流的局部时间平均努塞尔数结果比层流发育的通道流的可接受值高两倍。相对于非反向振荡流,周期性的反向流没有提供传热优势。

著录项

  • 作者

    Kearney, Sean Patrick.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号