首页> 外文学位 >A pressure-Poisson based Boussinesq-type phase resolving wave model.
【24h】

A pressure-Poisson based Boussinesq-type phase resolving wave model.

机译:基于压力泊松的Boussinesq型相位分辨波模型。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the hydraulic response during high energy events such as hurricanes and tsunamis is a problem of significant importance to coastal communities, as well as industries which have infrastructure along coastal waters. Due to the large range of temporal and spatial scales present during these events it isn't possible to fully study them in a laboratory setting and thus computational models are the standard approach to simulating hurricanes and tsunamis. The current suite of ocean circulation models used in the coastal hydraulics community solve the hydrostatic depth--averaged shallow water equations (SWE) which are adept at representing the hydraulic response to the hurricane wind and pressure forces and the ensuing storm surge runup along the coast but are unable to capture the higher frequency gravity and infragravity waves that are generated nearshore. Through the use of Boussinesq scaling a model is developed for resolving non--hydrostatic pressure profiles in nonlinear wave systems over varying bathymetry. In contrast to standard Boussinesq--type models, the model developed here focuses on solutions to the well known pressure-- Poisson problem, with the advantage that the pressure--Poisson equations are a stand alone set of equations which do not exhibit mixed space/time derivatives. The result is a Boussinesq--type pressure--Poisson model (PPBOUSS) that can be solved in a separate module and then coupled back into the SWE model. This allows for the straightforward modification of established SWE solvers to turn them into fully resolved nearshore models with very little structural change to the underlying SWE model and without the need to solve mixed space/time derivatives. Use of a Green-- Naghdi type polynomial expansion for the pressure profile in the vertical axis reduces the dimensionality of the pressure--Poisson problem to only two dimensions, significantly reducing computational cost. The resulting model shows rapid convergence properties with increasing order of polynomial expansion which can be greatly improved through the application of asymptotic rearrangement. An optimum choice of basis functions in the Green--Naghdi expansion provides significant improvements in the dispersion, shoaling and nonlinear properties of the model, for example achieving fourth order dispersive accuracy in a formally second order model, and eighth order dispersive accuracy in a formally fourth order model. Various numerical approaches to solving and coupling the PPBOUSS model are discussed including application of finite difference and finite element methods. Demonstration of the improvement in nearshore accuracy through application of the PPBOUSS model is shown through coupling with the unstructured mesh Discontinuous Galerkin Shallow Water Equation Model (DGSWEM). A straightforward numerics based wave breaking algorithm is employed in the nearshore and wave runup is captured using a globally mass conservative wetting/drying algorithm specifically designed for discontinuous Galerkin finite element models. The model is verified and validated using analytical and experimental results for both the fully nonlinear O(mu2) and weakly nonlinear O(mu4) implementations.
机译:理解飓风和海啸等高能量事件期间的水力响应,对沿海社区以及沿沿海水域具有基础设施的行业而言,是一个极为重要的问题。由于在这些事件中存在大量的时空尺度,因此不可能在实验室环境中对其进行全面研究,因此,计算模型是模拟飓风和海啸的标准方法。当前在海岸水力学界使用的海洋环流模型套件解决了静水平均深度浅水方程(SWE),该方程善于表示水力对飓风和压力的响应以及随之而来的沿海岸的风暴潮但无法捕获近海产生的高频重力波和次重力波。通过使用Boussinesq缩放比例,开发了一个模型,用于在变化的测深仪上解析非线性波系统中的非静水压力剖面。与标准的Boussinesq型模型相反,此处开发的模型着重于解决已知的压力泊松问题,其优势在于压力泊松方程是独立的方程组,不会显示混合空间/时间导数。结果是一个Boussinesq型压力泊松模型(PPBOUSS),可以在一个单独的模块中对其求解,然后再耦合回SWE模型中。这样就可以直接修改已建立的SWE求解器,从而将其转换为完全解析的近岸模型,而对基础SWE模型的结构变化很小,而无需求解混合的时空导数。对垂直轴上的压力曲线使用Green-Naghdi型多项式展开可将压力-泊松问题的维数减少到仅二维,从而显着降低了计算成本。结果模型显示出随着多项式展开次数增加而快速收敛的特性,通过应用渐近重排可以极大地改善这种特性。 Green-Naghdi展开中基函数的最佳选择显着改善了模型的色散,浅滩和非线性特性,例如,在正式的二阶模型中实现了四阶色散精度,在正式的二阶模型中实现了八阶色散精度四阶模型。讨论了求解和耦合PPBOUSS模型的各种数值方法,包括有限差分法和有限元方法的应用。通过与非结构网格不连续伽勒金浅水方程模型(DGSWEM)结合使用,证明了通过应用PPBOUSS模型改进近岸精度的情况。近岸采用了基于数值的简单波浪破碎算法,并使用了专为不连续Galerkin有限元模型设计的全局质量保守的润湿/干燥算法来捕获波浪上升。使用完全非线性O(mu2)和弱非线性O(mu4)实现的分析和实验结果对该模型进行了验证和验证。

著录项

  • 作者

    Donahue, Aaron Sheffield.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Mechanical engineering.;Computer science.;Ocean engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号