首页> 外文学位 >A fast method for computing current distribution on printed circuit boards and microwave integrated circuits using the method of moments.
【24h】

A fast method for computing current distribution on printed circuit boards and microwave integrated circuits using the method of moments.

机译:一种使用矩量法计算印刷电路板和微波集成电路上电流分布的快速方法。

获取原文
获取原文并翻译 | 示例

摘要

In order to determine current distribution on Printed Circuit Board (PCB) or Microwave Integrated Circuit (MIC) structure using the full-wave Method of Moments (MoM), the impedance of the structure must be computed first. A full-wave impedance matrix is frequency dependent in a non-trivial way; Green's function and consequently impedance matrix [Z] must be recomputed at each frequency separately to solve for the unknown current. A large percentage of CPU time required to solve the matrix equation [Z][I] = [V] is spent on calculating the impedance matrix, which becomes less and less efficient as the number of frequency points increases. Analysis of circuits with electrically thin substrates is even less efficient because these circuits require bigger impedance matrix in order to compute the unknown current [I] accurately.; We propose a way to speed up the computation of the impedance matrix by using a static approximation to Green's function and further simplifying the image part of the Green's function as a single term. Frequency independent inductance and capacitance elements Lnn and Cnn are computed using analytic expressions, which are exact, even for electrically thin substrates. We multiply Lnn and Cnn with phase shifts, which are linear functions of wave number k0, to get quasistatic inductance and capacitance matrices [Leq] and [Ceq]. Modified quasistatic impedance matrix [Z] is then assembled from jω[Leq] and 1/jω[C eq]. Impedance matrix [Z] at other frequencies is computed by multiplying Lnn and Cnn with appropriately scaled phase shifts and with jω.; Approximations made in computing impedance matrix cause error in current. We use an error bound not widely used in literature (but more accurate than better known bounds) to estimate current error. We show the improved accuracy of full-wave MoM solution when the substrate is electrically thin. CPU time needed to calculate current distribution on a MIC over frequency range using the approximate and full-wave MoM approach is compared, as well as accuracy of radiation pattern prediction.
机译:为了使用全波矩量法(MoM)确定印刷电路板(PCB)或微波集成电路(MIC)结构上的电流分布,必须首先计算结构的阻抗。全波阻抗矩阵与频率无关。必须分别在每个频率上重新计算格林函数和因此的阻抗矩阵[Z],以解决未知电流。求解矩阵方程[Z] [I] = [V]所需的大部分CPU时间都用于计算阻抗矩阵,随着频率点数量的增加,其效率越来越低。具有薄电基板的电路的分析效率甚至更低,因为这些电路需要更大的阻抗矩阵才能准确计算未知电流[I]。我们提出了一种通过使用格林函数的静态近似值来加速阻抗矩阵计算的方法,并进一步简化了格林函数的图像部分,使之成为一项。频率无关的电感和电容元件L nn 和C nn ' 使用解析表达式进行计算,即使对于电薄基板,也是如此。我们将L nn ' 和C nn ' 乘以相移,这是波数k < sub> 0 ,得到准静态电感和电容矩阵[L eq ]和[C eq ]。然后从jω[L eq ]和1 /jω[C eq ]组装修改后的准静态阻抗矩阵[Z]。通过将L nn ' 和C nn ' 乘以适当的比例,可以计算出其他频率下的阻抗矩阵[Z]相移且具有jω。计算阻抗矩阵时所做的近似会导致电流误差。我们使用文献中未广泛使用的误差范围(但比已知范围更准确)来估计当前误差。我们显示了当基板较薄时,全波MoM解决方案的精度提高了。比较了使用近似和全波MoM方法计算MIC在整个频率范围内的电流分布所需的CPU时间,以及辐射方向图预测的准确性。

著录项

  • 作者

    Jevremovic, Vladan.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号