首页> 外文学位 >Multi-scale modeling of the structure and dynamics of macromolecules.
【24h】

Multi-scale modeling of the structure and dynamics of macromolecules.

机译:大分子结构和动力学的多尺度建模。

获取原文
获取原文并翻译 | 示例

摘要

Biology is defined by phenomena that are inherently complex spanning multiple length and time scales. To understand these processes, there is a need for multi-scale approaches that provide a coherent framework for describing and interrogating these phenomena. Here, we employ multiple approaches to investigate specific biological systems. The first system we studied was the cytoplasmic dynein motor, a protein that walks along the microtubule tracks in cells. The major objective in the dynein motors field is to understand its mechanism. Specifically, what is dynein's structure and how does it transduce chemical energy into mechanical work? We proposed a theoretical structural model of the motor and performed normal mode analysis and molecular dynamics on the motor unit structure. These studies hypothesized new structural features in the dynein motor unit and proposed a potential mechanism for energy transduction [5,6,80]. The second system we studied was the CFTR channel, which regulates ion transport in the apical membrane of epithelial cells. Mutations in the CFTR protein are the basis of the cystic fibosis disease. One of the primary question is how a single residue deletion (Phe508) lead to ∼90% of cystic fibrosis cases. We performed molecular dynamics simulation of the first nucleotide-binding domain of CFTR and showed that the wild type and mutant exhibit a difference in their folding kinetics, in agreement with experiments. These simulations also determined the potential structural origin of this misfolding defect. We also proposed a complete model of the CFTR channel to identify the location of the Phe508 residue in the whole protein. This result is important in understanding another aspect of the DeltaF508 defect, which is the misassembly of the whole CFTR protein during its biosynthesis.
机译:生物学是由跨越多个长度和时间尺度的内在复杂的现象定义的。为了理解这些过程,需要提供多种尺度的方法,以提供描述和询问这些现象的连贯框架。在这里,我们采用多种方法来研究特定的生物系统。我们研究的第一个系统是细胞质动力蛋白,一种沿着细胞中微管轨迹运动的蛋白质。动力马达领域的主要目标是了解其机理。具体来说,达因的结构是什么,它如何将化学能转化为机械功?我们提出了电动机的理论结构模型,并对电动机单元结构进行了正态分析和分子动力学。这些研究假设了动力蛋白动力单元的新结构特征,并提出了一种潜在的能量传导机制[5,6,80]。我们研究的第二个系统是CFTR通道,该通道调节上皮细胞顶膜中的离子运输。 CFTR蛋白的突变是囊性纤维化疾病的基础。主要问题之一是单个残基缺失(Phe508)如何导致约90%的囊性纤维化病例。我们对CFTR的第一个核苷酸结合域进行了分子动力学模拟,结果表明野生型和突变体的折叠动力学表现出差异,与实验一致。这些模拟还确定了这种错折缺陷的潜在结构起源。我们还提出了CFTR通道的完整模型,以鉴定Phe508残基在整个蛋白质中的位置。该结果对于理解DeltaF508缺陷的另一个方面很重要,该缺陷是整个CFTR蛋白在其生物合成过程中的错配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号