首页> 外文学位 >No Nonsense: The Protection of Wild-Type mRNAs From Nonsense-Mediated mRNA Decay in Saccharomyces cerevisiae.
【24h】

No Nonsense: The Protection of Wild-Type mRNAs From Nonsense-Mediated mRNA Decay in Saccharomyces cerevisiae.

机译:没有废话:酿酒酵母中的无意义介导的mRNA衰变对野生型mRNA的保护。

获取原文
获取原文并翻译 | 示例

摘要

Gene regulation in eukaryotes is tightly controlled at multiple levels to ensure proper expression and cellular homeostasis. Misregulation of gene expression is a common source of genetic disease. One mechanism by which cells are able to control gene expression is through the synthesis and degradation of the mRNA molecules encoding the genes. The transcription and degradation of mRNA molecules controls the pool mRNAs that are available to the translational machinery. One of the well-studied mRNA decay pathways is the Nonsense-Mediated mRNA Decay pathway (NMD). Originally, NMD was discovered as a posttranscriptional mRNA surveillance mechanism responsible for the deadenylation-independent decapping and rapid 5'→3' degradation of mRNAs that harbor premature termination codons (PTCs). Approximately one-third of all inherited genetic disease and cancers are related to NMD. It is now known that NMD plays a much larger role in the stability and expression of wild-type mRNAs as well. Wild-type mRNAs with NMD-targeting signals, which include 1) a translated uORF, 2) a long 3' UTR, 3) leaky scanning leading to out-of-frame initiation of translation, 3) programmed ribosome frameshift sites, and 5) regulated alternative splicing variants, are rapidly destabilized by NMD. It has also been observed that some wild-type mRNAs contain NMD targeting signals but are not degraded by NMD due to protecting mechanism. Here we show that the SSY5 mRNA in Saccharomyces cerevisiae is a wild-type mRNA with multiple NMD targeting signals but is not degraded by NMD. None of the current models for NMD protection explain the SSY5 mRNA stability so the mechanism of protection is likely to be novel. Additionally, we show the SSY5 mRNA is primarily degraded 5'→3'. We also explore two additional mRNAs, YAP1 and GCN4, in S. cerevisiae that also contain at least one NMD-targeting signal but are not degraded by NMD. Elucidating the mechanism of protection from NMD of these three mRNAs will provide valuable insight to the underlying molecular mechanisms of NMD, which despite thorough investigation remain unclear. Understanding the molecular intricacies of the NMD pathway will allow for the efficient development of NMD-related disease therapies with minimal risks and side-effects.
机译:真核生物中的基因调控被严格控制在多个水平上,以确保正确的表达和细胞稳态。基因表达的失调是遗传疾病的常见来源。细胞能够控制基因表达的一种机制是通过编码基因的mRNA分子的合成和降解。 mRNA分子的转录和降解控制着可用于翻译机制的库mRNA。深入研究的mRNA衰变途径之一是无义介导的mRNA衰变途径(NMD)。最初,NMD被发现是转录后的mRNA监测机制,负责独立于腺苷酸化的脱盖和具有过早终止密码子(PTC)的mRNA的5'→3'快速降解。所有遗传遗传疾病和癌症中约有三分之一与NMD有关。现已知道,NMD在野生型mRNA的稳定性和表达中也起着更大的作用。具有NMD靶向信号的野生型mRNA,包括1)翻译的uORF,2)较长的3'UTR,3)漏检导致翻译的框外起始,3)编程的核糖体移码位点和5 )调控的可变剪接变体被NMD迅速破坏了稳定性。还已经观察到一些野生型mRNA含有NMD靶向信号,但是由于保护机制而不会被NMD降解。在这里,我们显示酿酒酵母中的SSY5 mRNA是具有多个NMD靶向信号但未被NMD降解的野生型mRNA。当前NMD保护模型均无法解释SSY5 mRNA的稳定性,因此保护机制可能是新颖的。此外,我们显示SSY5 mRNA主要降解5'→3'。我们还探讨了酿酒酵母中的另外两个mRNA,YAP1和GCN4,它们也包含至少一个NMD靶向信号,但不被NMD降解。阐明这三种mRNA的NMD保护机制将为NMD的潜在分子机制提供有价值的见解,尽管进行了深入的研究仍不清楚。了解NMD途径的分子错综复杂将使NMD相关疾病疗法的有效开发具有最小的风险和副作用。

著录项

  • 作者

    Patefield, Krista D.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Molecular biology.;Biology.;Microbiology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号