首页> 外文学位 >Experimental investigation of noise reduction in supersonic jets due to jet rotation and to nozzle geometry changes.
【24h】

Experimental investigation of noise reduction in supersonic jets due to jet rotation and to nozzle geometry changes.

机译:超音速喷气机由于喷气旋转和喷嘴几何形状变化而产生的降噪实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The present work deals with two different methods used for noise reduction in supersonic jets. The first method employed consisted of a swirl chamber, which produced axisymmetric jets with a tangential velocity component. This component was found to affect the structure of the jet cell and the internal oblique shocks formed inside. In the second method, the nozzle exit plane of the cylindrical chamber was perturbed such that the nozzle's exit lip was not lying in one plane perpendicular to the axis of symmetry of the nozzle.; These two methods were investigated experimentally via spark Schlieren photography, static, Pitot and sound pressure measurements. Schlieren photography was employed to visualize the flow and shock structure associated with any of the above changes. Static and pitot pressure measurements were carried out to obtain the velocity distribution whereas sound pressure measurements were used to determine the resulting gain in noise reduction. The introduction of a small flow rotation was found to weaken the internal shock strength and to reduce the cell length and screech noise generated. Increasing the flow rotation beyond a certain limit was found to effect the shock structure without any noticeable noise reduction. Sinusoidal perturbation was found to affect the symmetry and strength of the oblique shocks in the supersonic cells. A considerable noise reduction was also noted with perturbation amplitude equal to 12.5% of the nozzle inside diameter. Larger perturbation did not result in a further noise reduction. In the first and second methods, a maximum noise reduction of 12 dB and 8 dB were measured, respectively.
机译:本工作涉及两种不同的方法,用于降低超音速喷气飞机的噪声。采用的第一种方法是涡流室,该涡流室产生具有切向速度分量的轴对称射流。发现该成分会影响喷射室的结构以及内部形成的内部倾斜冲击。在第二种方法中,圆柱形腔室的喷嘴出口平面被扰动,使得喷嘴的出口唇不在垂直于喷嘴对称轴的一个平面内。通过火花Schlieren摄影,静态,皮托管和声压测量对这两种方法进行了实验研究。 Schlieren摄影被用来可视化与上述任何变化相关的流动和冲击结构。进行静压和皮托管压力测量以获得速度分布,而使用声压测量来确定所得的降噪增益。发现小流量旋转的引入减弱了内部冲击强度,并减小了电池长度和发出的尖叫声。发现将流体旋转增加到超过特定极限会影响冲击结构,而不会明显降低噪音。发现正弦扰动会影响超声速细胞中斜向冲击的对称性和强度。还注意到扰动幅度等于喷嘴内径的12.5%时,噪音也大大降低。较大的摄动并不能进一步降低噪声。在第一种和第二种方法中,分别测得的最大噪声降低为12 dB和8 dB。

著录项

  • 作者

    Algattus, Said S.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Physics Acoustics.; Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 声学;航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号