首页> 外文学位 >System performance improvement in optical wavelength division multiplexing systems and networks using optical gratings.
【24h】

System performance improvement in optical wavelength division multiplexing systems and networks using optical gratings.

机译:使用光栅的光波分复用系统和网络中系统性能的提高。

获取原文
获取原文并翻译 | 示例

摘要

The low-loss transmission window of silica fibers in the 1.55-μm wavelength region is about 25 THz. The usable bandwidth of the erbium-doped fiber amplifier is about 3.5 THz. As a result, full utilization of the entire usable bandwidth is a very important research issue in optical fiber communication system. One of the most promising techniques to accomplish this is wavelength-division multiplexing (WDM). WDM corresponds to the scheme in which optical carriers at different wavelengths are modulated using independent electrical bit streams and then transmitted over the same fiber. Though WDM techniques can dramatically increase transmission capacity, there are several phenomena which limit the transmission performance, especially for long-haul links. These limiting factors include: non-uniform EDFA gain profiles, fast power transients of the cascaded EDFA chains, accumulated amplified spontaneous emission (ASE) noise, fiber dispersion, and nonlinearities.; Many techniques have been developed to solve these problems. Most of these technologies are passive and have proved successfully in long distance point-to-point transmission. However, in a highly dynamic reconfigurable network, each individual WDM channel might be dropped or added frequently. For such a non-static network, the system performance will definitely be degraded if there is no associated technology to carefully take care of the problems induced by the dynamic conditions. In addition, there is also a slow performance variation due to the degradation of the deployed optical components in the system. As a result, active/dynamic solutions of these problems are necessary.; To guarantee the robustness of communication systems, we have successfully demonstrated techniques to solve these problems dynamically. These techniques include: (1) using acousto-optical (AO) modulators and amplitude-tunable long period gratings to equalize channel power nonuniformity due to non-uniform EDFA gain, (2) using AO modulators to cancel fast power transients in WDM systems, (3) developing a novel tunable dispersion compensator based on a nonlinearly chirped fiber Bragg grating (FBG), which dynamically compensates the accumulated chromatic dispersion in a 10 Gb/s system, and (4) designing a new sampled nonlinearly chirped fiber Bragg grating to simultaneously compensate accumulated chromatic dispersion for three WDM channels at 10 Gb/s.
机译:石英纤维在1.55μm波长范围内的低损耗传输窗口约为25 THz。掺fiber光纤放大器的可用带宽约为3.5 THz。结果,在光纤通信系统中充分利用整个可用带宽是一个非常重要的研究问题。实现这一目标的最有前途的技术之一是波分复用(WDM)。 WDM对应于以下方案:使用独立的电比特流调制不同波长的光载波,然后在同一根光纤上传输。尽管WDM技术可以极大地增加传输容量,但是有几种现象会限制传输性能,尤其是对于长距离链路。这些限制因素包括:不均匀的EDFA增益曲线,级联EDFA链的快速功率瞬变,累积的放大自发发射(ASE)噪声,光纤色散和非线性。已经开发出许多技术来解决这些问题。这些技术大多数都是无源的,并已在远距离点对点传输中得到了成功的证明。但是,在高度动态的可重新配置网络中,每个单独的WDM通道可能会频繁掉线或添加。对于这种非静态网络,如果没有关联的技术来小心处理由动态条件引起的问题,则系统性能肯定会降低。此外,由于系统中部署的光学组件的性能下降,性能变化也很慢。结果,需要主动/动态解决这些问题。为了保证通信系统的健壮性,我们成功地演示了动态解决这些问题的技术。这些技术包括:(1)使用声光(AO)调制器和幅度可调长周期光栅来补偿由于EDFA增益不均匀导致的信道功率不均匀,(2)使用AO调制器来消除WDM系统中的快速功率瞬变, (3)开发基于非线性chi光纤布拉格光栅(FBG)的新型可调谐色散补偿器,可动态补偿10 Gb / s系统中的累积色散,以及(4)设计新的采样非线性chi光纤布拉格光栅来同时以10 Gb / s的速率补偿三个WDM通道的累积色散。

著录项

  • 作者

    Feng, Kai-Ming.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 p.6269
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号