首页> 外文学位 >Frisky whiskers: The rat vibrissal system as a model of active sensing.
【24h】

Frisky whiskers: The rat vibrissal system as a model of active sensing.

机译:活泼的胡须:作为主动感应模型的大鼠振动系统。

获取原文
获取原文并翻译 | 示例

摘要

Active sensing can be defined as a sensing process that requires the expenditure of energy. Often this energy is used to move sensors relative to the environment. Importantly, active sensing is used in both biological and engineered systems, making it ripe ground for bio-inspired engineering. In this thesis I investigate active sensing in a model system (the rat vibrissal system) to uncover principles of biological active sensing that could apply - either directly or by analogy - to engineered systems. The central question is: how do biological systems choose movements that efficiently gather information during perception?;The rat vibrissal (whisker) system is a premier biological system for investigating active sensing. Using this system, I explore five principles of active sensing. First, the vibrissal system is a distributed sensor network composed of modular sensors, allowing for greater reliability and scalability compared to single sensors. Second, the whisker system is a scanning system and I demonstrate an adaptive scan-path mechanism based on velocity control. This mechanism enables sampling at different resolutions during a single sampling cycle. Third, the vibrissal system represents a hierarchical sensor in which movements at each stage get progressively faster and sensors become increasingly lower in mass. I present data showing how predictive, or look-ahead" spatial mechanisms enhance search behavior. Fourth, I developed instrumentation to measure the small, low-force whisker-object contacts and illuminate the rats non-uniform sampling strategy. This non-uniform sampling is characterized by periodic fixations at distinct spatial locations and jitter around these fixations. This multiple length-scale sampling strategy is analogous to optimal search strategies, which minimize search time. Finally, I show evidence that temporal jitter around fixations may prime neural circuits to certain incoming data, a potentially useful strategy for engineered systems with limited computational resources. These principles are discussed in the context of engineered systems, neural processing, sensorimotor control, and active sensing.;In summary, this thesis describes five primary contributions to the vibrissal field, which also inform the broader field of active sensing. These contributions further open the rat vibrissal system as a biological model of active sensing that can be used for bio-inspired engineering.
机译:主动感测可以定义为需要消耗能量的感测过程。通常,这种能量用于相对于环境移动传感器。重要的是,在生物和工程系统中都使用了主动感测,这使其成为了生物启发工程的成熟基础。在这篇论文中,我研究了模型系统(大鼠振动系统)中的主动感应,以揭示生物主动感应的原理,这些原理可以直接或通过类比应用于工程系统。中心问题是:生物系统如何选择能在感知过程中有效收集信息的运动?;大鼠振动(晶须)系统是研究主动感测的主要生物系统。使用该系统,我探索了主动感应的五个原理。首先,振动系统是由模块化传感器组成的分布式传感器网络,与单个传感器相比,具有更高的可靠性和可扩展性。其次,晶须系统是一个扫描系统,我演示了一种基于速度控制的自适应扫描路径机制。这种机制可以在单个采样周期内以不同的分辨率进行采样。第三,振动系统代表一个分层的传感器,其中每个阶段的运动逐渐加快,并且传感器的质量越来越低。我提供的数据显示了预测性或“前瞻性”空间机制如何增强搜索行为。第四,我开发了用于测量小的低力晶须对象接触并阐明大鼠非均匀采样策略的仪器。这种非均匀采样其特点是周期性固定在不同的空间位置,并在这些固定周围产生抖动,这种多重长度尺度的采样策略类似于最佳搜索策略,可最大程度地减少搜索时间。传入数据,这对于计算资源有限的工程系统可能是有用的策略,在工程系统,神经处理,感觉运动控制和主动感应的背景下讨论这些原理;总而言之,本文描述了对振动区域的五个主要贡献,这也为主动感应的广泛领域提供了信息。大鼠震荡系统是一种主动感应的生物学模型,可用于生物启发工程。

著录项

  • 作者

    Towal, Regan Blythe.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Biomedical.;Engineering Robotics.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号