首页> 外文学位 >Functional brain imaging: Combining EEG andfMRI using finite element and Bayesian methods.
【24h】

Functional brain imaging: Combining EEG andfMRI using finite element and Bayesian methods.

机译:功能性脑成像:使用有限元和贝叶斯方法结合脑电图和功能磁共振成像。

获取原文
获取原文并翻译 | 示例

摘要

The localization of cerebral activity is a principal goal of functional brain imaging techniques such as functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG). FMRI detects brain activity by measuring the blood oxygenation level dependant (BOLD) effect, and EEG measures the electrical activity of the brain directly. FMRI demonstrates excellent spatial resolution (∼1mm), however its effective temporal resolution (1 ∼ 2 sec) is limited by relatively slow blood hemodynamics. In contrast, EEG can measure the brain activity in msec, but its spatial resolution remains in cm due to the lack of realistic head models and robust inverse procedures. Therefore combining fMRI and EEG premises high spatiotemporal resolution for imaging brain activity.; Most classical source localization (i.e., forward/inverse) techniques in EEG utilize over-simplified multi-layered spherical head models. However the actual human head is far more complicated due to varying thickness and electrical conductivity of different portions within the head. Also fMRI is known to be prone to artifacts caused by spatiotemporally varying structural noise components such as gross head motion, cerebro-spinal fluid pulsation, physiological fluctuations, and changes in magnetic susceptibility. The presence of these artifacts can cause negative and positive false activation, and obscure detection of true activated pixels. Thus, the reliability of the functional images can be diminished.; In this work, novel EEG forward/inverse techniques have been developed using the finite element method (FEM). Automatic construction methods of a realistic finite element head model based on MR images have been devised using the Delaunay tessellation procedure and the semi-automated MR image segmentation technique. To correlate the findings of EEG source localization with those of fMRI, noise and artifacts in fMRI are reduced by a Bayesian processing strategy developed in this study. The techniques are validated through both computer simulation and human studies. The results of Bayesian processing using human visual fMRI data demonstrate its effectiveness in reducing noise and artifacts in fMRI and enhancing the connectivity of activated pixels. The FEM-EEG simulation and human evoked motor potential studies demonstrate the feasibility of novel methods for EEG source localization suggesting a promising approach to combine fMRI and EEG.
机译:脑活动的定位是功能性脑成像技术(例如功能性磁共振成像(fMRI)和脑电图(EEG))的主要目标。 FMRI通过测量血液氧合水平依赖性(BOLD)效应来检测大脑活动,而EEG直接测量大脑的电活动。 FMRI表现出出色的空间分辨率(〜1mm),但是其有效的时间分辨率(1-2秒)受到相对较慢的血液血液动力学的限制。相比之下,EEG可以以毫秒为单位测量大脑活动,但是由于缺乏逼真的头部模型和强大的逆过程,其空间分辨率仍以cm为单位。因此,将fMRI和EEG结合起来可为大脑活动成像提供高时空分辨率。 EEG中大多数经典的源定位(即正向/反向)技术都使用过度简化的多层球形头模型。然而,由于头部内不同部分的厚度和电导率的变化,实际的人头要复杂得多。众所周知,功能磁共振成像也容易因时空变化的结构噪声成分(例如头部总体运动,脑脊髓液脉动,生理波动和磁化率的变化)而引起伪像。这些伪影的存在会导致负激活和正激活错误,并无法正确检测出真正的激活像素。因此,可以降低功能图像的可靠性。在这项工作中,已经使用有限元方法(FEM)开发了新颖的EEG正向/反向技术。使用Delaunay细分过程和半自动MR图像分割技术,设计了基于MR图像的逼真的有限元头部模型的自动构建方法。为了将脑电信号源定位的结果与功能磁共振成像的结果相关联,本研究开发的贝叶斯处理策略减少了功能磁共振成像中的噪声和伪影。该技术已通过计算机仿真和人体研究验证。使用人类视觉fMRI数据进行贝叶斯处理的结果证明了其在减少fMRI中的噪声和伪影以及增强激活像素的连通性方面的有效性。 FEM-EEG模拟和人类诱发的运动潜能研究证明了脑电信号源定位新方法的可行性,表明将fMRI与EEG结合的有前途的方法。

著录项

  • 作者

    Kim, Tae-Seong.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Biomedical.; Health Sciences Radiology.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;预防医学、卫生学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号