首页> 外文学位 >Electro- and magneto-optic properties of photorefractive semiconductors.
【24h】

Electro- and magneto-optic properties of photorefractive semiconductors.

机译:光折变半导体的电光和磁光特性。

获取原文
获取原文并翻译 | 示例

摘要

The photorefractive effect is a low intensity, nonlocal optical nonlinearity which has been studied extensively because of its potential uses. Photorefractive quantum wells exhibit record sensitivities and speeds, and are prime candidates for optical processing applications, both in the spatial (for images) and in the time domain (for the shaping of femtosecond pulses). For this latter application, multiple quantum well devices have to overcome a large bandwidth mismatch with femtosecond pulses, which arises from the resonant nature of photorefractivity at the bandgap. By engineering the excitonic transition spectrum of multiple quantum wells, the bandwidth of photorefractive multiple quantum well devices is increased to match that of ultrafast pulses. In superlattices, breaking of the spatial periodicity leads to the emergence of a wide distribution of critical points and transition energies; we have explored the effect of quasiperiodicity in Fibonacci superlattices, where excitonic interactions concentrate the oscillator strength at low energies and limit the useful diffractive bandwidth. Multiple quantum well structures in which the quantum wells are isolated and the quantum confinement can be tuned along the thickness of the device offer a wide parameter space for bandwidth design. In quantum well devices, almost dispersion-free diffraction can be achieved due to the Kramers-Kronig relationship between the real and imaginary parts of the electro-refraction, which makes the phase of the diffracted pulse linear in frequency. The second part of the thesis concentrates on the photorefractive effect in diluted magnetic semiconductors. In ZnMnSe epilayers, we demonstrate resonant photorefractive diffraction in the blue spectral region. Wide-gap II-VI semiconductors have characteristic properties (such as high absorption coefficients at the gap and low sensitivity to electric fields) which make the fabrication of resonant photorefractive devices in the transverse geometry particularly challenging. Finally, we use the bulk diluted magnetic semiconductor CdMnTe to show that a magnetic field can quench time-reversed or phase conjugate light, in a striking illustration of removal of time reversal symmetry by magnetic fields. We discuss the limits of this analogy and outline the effect of magnetic fields on the geometric (Berry's) phase of the phase conjugate beam.
机译:光折变效应是一种低强度的非局部光学非线性,由于其潜在用途而被广泛研究。光折变量子阱表现出创纪录的灵敏度和速度,并且是空间(用于图像)和时域(用于飞秒脉冲的整形)中光学处理应用的主要候选者。对于后一种应用,多个量子阱器件必须克服飞秒脉冲的大带宽失配,这是由于带隙处的光折射的共振特性引起的。通过设计多量子阱的激子跃迁谱,可以增加光折射多量子阱器件的带宽以匹配超快脉冲的带宽。在超晶格中,空间周期性的破坏导致临界点和跃迁能量的广泛分布。我们已经研究了准周期性在斐波那契超晶格中的作用,其中激子相互作用将振子强度集中在低能量上并限制了有用的衍射带宽。多个量子阱结构隔离了多个量子阱,并且可以沿着器件的厚度调整量子限制,从而为带宽设计提供了广阔的参数空间。在量子阱装置中,由于电折射的实部和虚部之间的Kramers-Kronig关系,可以实现几乎无色散的衍射,这使衍射脉冲的相位在频率上呈线性。论文的第二部分着重于稀磁半导体中的光折射效应。在ZnMnSe外延层中,我们证明了在蓝色光谱区域内的共振光折变衍射。宽间隙II-VI半导体具有特性(例如,间隙处的吸收系数高,对电场的敏感性低),这使得在横向几何结构中制造谐振型光折射器件特别具有挑战性。最后,我们用大量稀释的磁性半导体CdMnTe来显示磁场可以猝灭时间反转或相位共轭光,这是通过磁场消除时间反转对称性的引人注目的插图。我们讨论了这种类比的局限性,并概述了磁场对相位共轭束的几何(贝里)相的影响。

著录项

  • 作者

    Dinu, Mihaela.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Physics Condensed Matter.; Physics Optics.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号