首页> 外文学位 >Microcantilever-based force sensing, control and imaging.
【24h】

Microcantilever-based force sensing, control and imaging.

机译:基于微悬臂梁的力感测,控制和成像。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a distributed-parameters base modeling framework for microcantilever (MC)-based force sensing and control with applications to nanomanipulation and imaging. Due to the widespread applications of MCs in nanoscale force sensing or atomic force microscopy with nano-Newton to pico-Newton force measurement requirements, precise modeling of the involved MCs is essential. Along this line, a distributed-parameters modeling framework is proposed which is followed by a modified robust controller with perturbation estimation to target the problem of delay in nanoscale imaging and manipulation. It is shown that the proposed nonlinear model-based controller can stabilize such nanomanipulation process in a very short time compared to available conventional methods. Such modeling and control development could pave the pathway towards MC-based manipulation and positioning.;The first application of the MC-based (a piezoresistive MC) force sensors in this dissertation includes MC-based mass sensing with applications to biological species detection. MC-based sensing has recently attracted extensive interest in many chemical and biological applications due to its sensitivity, extreme applicability and low cost. By measuring the stiffness of MCs experimentally, the effect of adsorption of target molecules can be quantified. To measure MC's stiffness, an in-house nanoscale force sensing setup is designed and fabricated which utilizes a piezoresistive MC to measure the force acting on the MC's tip with nano-Newton resolution. In the second application, the proposed MC-based force sensor is utilized to achieve a fast-scan laser-free Atomic Force Microscopy (AFM). Tracking control of piezoelectric actuators in various applications including scanning probe microscopes is limited by sudden step discontinuities within time-varying continuous trajectories. For this, a switching control strategy is proposed for effective tracking of such discontinuous trajectories. A new spiral path planning is also proposed here which improves scanning rate of the AFM. Implementation of the proposed modeling and controller in a laser-free AFM setup yields high quality image of surfaces with stepped topographies at frequencies up to 30 Hz.;As the last application of the MC-based force sensors, a nanomanipulator named here MM3ARTM is utilized for nanomanipulation purposes. The area of control and manipulation at the nanoscale has recently received widespread attention in different technologies such as fabricating electronic chipsets, testing and assembly of MEMS and NEMS, micro-injection and manipulation of chromosomes and genes. To overcome the lack of position sensor on this particular manipulator, a fused vision force feedback robust controller is proposed. The effects of utilization of the image and force feedbacks are individually discussed and analyzed for use in the developed fused vision force feedback control framework in order to achieve ultra precise positioning and optimal performance.
机译:本文提出了一种基于微悬臂梁力传感和控制的分布式参数基础建模框架,并应用于纳米操纵和成像。由于MC在具有纳米牛顿到皮牛顿力测量要求的纳米级力感测或原子力显微镜中的广泛应用,因此对涉及的MC进行精确建模至关重要。沿着这条线,提出了一种分布式参数建模框架,其后是带有扰动估计的改进的鲁棒控制器,以解决纳米级成像和操纵中的延迟问题。结果表明,与现有的常规方法相比,所提出的基于非线性模型的控制器可以在很短的时间内稳定这种纳米操作过程。这样的建模和控制开发可以为基于MC的操纵和定位铺平道路。基于MC的(压阻式MC)力传感器在本论文中的首次应用包括基于MC的质量感测,并应用于生物物种检测。基于MC的传感技术由于其灵敏性,极高的适用性和低成本而最近在许多化学和生物学应用中引起了广泛的兴趣。通过实验测量MC的刚度,可以量化目标分子吸附的效果。为了测量MC的刚度,设计并制造了一个内部纳米级力感测装置,该装置利用压阻MC来测量以纳米牛顿分辨率作用在MC尖端上的力。在第二个应用中,所提出的基于MC的力传感器用于实现无激光的快速扫描原子力显微镜(AFM)。在包括扫描探针显微镜在内的各种应用中,压电执行器的跟踪控制受到时变连续轨迹中突然的阶跃不连续性的限制。为此,提出了一种用于有效跟踪这种不连续轨迹的切换控制策略。这里还提出了一种新的螺旋路径规划,该规划可以提高AFM的扫描速率。在无激光的AFM装置中实施所提出的建模和控制器,可在频率高达30 Hz的情况下产生具有阶梯形地形的高质量表面图像;作为基于MC的力传感器的最新应用,使用了一种名为MM3ARTM的纳米操纵器用于纳米操作。纳米级的控制和操纵领域最近在不同技术中受到广泛关注,例如制造电子芯片组,MEMS和NEMS的测试和组装,显微注射以及染色体和基因的操纵。为了克服在该特定操纵器上的位置传感器的不足,提出了一种融合的视觉力反馈鲁棒控制器。单独讨论并分析了利用图像和力反馈的效果,以用于已开发的融合视觉力反馈控制框架中,以实现超精确的定位和最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号