首页> 外文学位 >Refractory wall thickness measurements in high temperature environments and in thermal and material property gradients using the impact-echo method.
【24h】

Refractory wall thickness measurements in high temperature environments and in thermal and material property gradients using the impact-echo method.

机译:使用冲击回波法在高温环境以及热和材料性能梯度中测量耐火墙厚度。

获取原文
获取原文并翻译 | 示例

摘要

Several industries rely on the use of refractory furnaces, including iron and steel processing and glass manufacturing. The goal in each of these industries is to keep the furnaces in operation as much of the time as possible with minimum time off-line for repair or replacement. Currently, empirical techniques (visual inspection and measurement of external wall temperatures) are used to monitor the integrity of the walls. A more precise and reliable method for measuring wall thickness, which could be used while the furnace remains on-line and in operation, would aid in determining more accurately when maintenance or replacement of the refractory is required. The goal of this research project was to develop a method for monitoring the thickness of refractory furnace walls while the furnace remains in-service. The chosen method, impact-echo, is a nondestructive testing technique which uses transient stress waves and was originally developed for use on concrete structures. Three-dimensional dynamic finite element simulations were used to gain an understanding of the propagation of elastic stress waves in temperature gradients, at interfaces between solid and liquid materials and within the unique geometry of refractory blocks. Experimental instrumentation was developed that could withstand the high temperature environment that may be encountered surrounding refractory furnaces. Two refractory furnaces were then tested and the wall thickness measured: one off-line, cooled and ready for replacement and one at high temperature during its operation. The results showed that the impact-echo method could be used successfully to monitor the wall thickness of refractory furnaces. The effects of uncertainties in wave speed and material properties on the accuracy of the measured wall thickness are discussed.
机译:一些行业依靠耐火炉的使用,包括钢铁加工和玻璃制造。这些行业中的每个行业的目标是使熔炉尽可能长时间地保持运行,并以最少的离线时间进行维修或更换。当前,经验技术(目视检查和测量外壁温度)用于监测壁的完整性。一种更精确和可靠的壁厚测量方法,可以在炉子保持在线状态和运行时使用,有助于更准确地确定何时需要维护或更换耐火材料。该研究项目的目的是开发一种在熔炉保持运行状态时监控耐火炉壁厚度的方法。所选的冲击回波是一种无损测试技术,它使用瞬态应力波,最初是为在混凝土结构上使用而开发的。使用三维动态有限元模拟来了解弹性应力波在温度梯度,固体和液体材料之间的界面以及耐火砖独特几何形状内的传播。开发了可以承受耐火炉周围高温环境的实验仪器。然后测试了两台耐火炉,并测量了壁厚:一台离线,冷却并准备更换,一台在运行过程中处于高温状态。结果表明,冲击回波法可以成功地监测耐火炉的壁厚。讨论了波速和材料特性的不确定性对测得的壁厚精度的影响。

著录项

  • 作者

    Jaeger, Barbara Jo.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Civil.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号