首页> 外文学位 >Symbolic optimization and the SyOpt system: The application of symbolic mathematics to the design of mathematical optimization algorithms and systems.
【24h】

Symbolic optimization and the SyOpt system: The application of symbolic mathematics to the design of mathematical optimization algorithms and systems.

机译:符号优化和SyOpt系统:符号数学在数学优化算法和系统设计中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores the application of symbolic mathematics to nonlinear constrained mathematical optimization. Nonlinear programming (NLP) has been applied to a wide variety of business and scientific problems in such areas a chemical process engineering, electrical circuit design, inventory planning, financial portfolio optimization, parameter estimation, airline reservation planning, optimal control optimization, and many other areas. Symbolic mathematics is the application of computing technology to the manipulation of mathematical expressions and mathematical concepts. In recent years the techniques of symbolic mathematics have been popularized by the availability of software packages such as Mathematica and Maple. In contrast, numeric computing is the application of computing technology to the manipulation of numeric quantities (floating point representations) and has been used extensively for mathematical programming implementations. Symbolic mathematics extends the applicability of computing to such problems as: (1) Finding a mathematical expression for the gradient or Hessian of an expression. (2) Finding an expression or quantity for the limit of an expression as a variable approaches a given value from one or more directions. (3) Finding the greatest common denominator (GCD) expression of two polynomials which may be used to simplify the quotient of two polynomials. (4) Performing exact arithmetic in the rational polynomial domain Q to avoid numeric loss of accuracy from repeated computations. (5) Finding all solutions to a given system of nonlinear equations.;As part of this thesis the author has developed a specialized object-oriented symbolic optimization system called SyOpt which has the ability to do symbolic computations over both rational and real fields and is highly extensible to future symbolic optimization research efforts. The SyOpt implementation is focused on taro particular algorithms for symbolic optimization; (i) the development of a symbolic implementation of the barrier method of NLP, called the symbolic barrier algorithm for polynomial constrained global optimization and (ii) the application of symbolic techniques to preprocessing NLP formulations into equivalent but simplified forms. In both of these applications the key theoretical underpinning is Grobner basis theory developed in 1965 which, among its many applications, allows one to symbolically solve systems of polynomial equations.;A major contribution of this work is that the symbolic barrier method offers several advantages over numerical barrier algorithms. First, unlike a numerical barrier algorithm, the method generates all local optima to the problem (under certain assumptions) and thereby can determine the global optimal or multiple global optima for problems that are bounded. Furthermore, an initial feasible solution is not required. Computational results are given for some small, but difficult, nonlinear test problems and the symbolic method is contrasted with current state-of-the-art numeric global optimization techniques.*.;*This dissertation includes a compound CD which requires an ANSI standard CLOS runtime such as Allegro Common Lisp from Franz Inc.
机译:本文探索了符号数学在非线性约束数学优化中的应用。非线性规划(NLP)已应用于化学过程工程,电路设计,库存计划,财务投资组合优化,参数估计,航空公司预订计划,最优控制优化等领域的各种商业和科学问题。地区。符号数学是计算技术在数学表达式和数学概念的操纵中的应用。近年来,由于诸如Mathematica和Maple之类的软件包的使用,符号数学技术得到了普及。相反,数值计算是将计算技术应用于数值量(浮点表示)的操作,并且已广泛用于数学编程实现。符号数学将计算的适用性扩展到以下问题:(1)为表达式的梯度或Hessian查找数学表达式。 (2)从一个或多个方向寻找一个表达式或极限表达式的数量作为变量逼近给定值。 (3)找到两个多项式的最大公分母(GCD)表达式,该表达式可用于简化两个多项式的商。 (4)在有理多项式域Q中执行精确算术,以避免重复计算导致精度数值损失。 (5)找到给定的非线性方程组的所有解。作为本文的一部分,作者开发了一种称为SyOpt的专门的面向对象的符号优化系统,该系统具有对有理和实数域进行符号计算的能力,并且高度可扩展到将来的符号优化研究工作。 SyOpt实现的重点是用于符号优化的芋头特定算法; (i)开发NLP屏障方法的符号实现,该方法称为多项式约束全局最优化的符号屏障算法,并且(ii)将符号技术应用于将NLP公式预处理为等效但简化的形式。在这两种应用中,关键的理论基础是1965年开发的Grobner基础理论,在许多应用中,它使人们可以用符号方式求解多项式方程组。这项工作的主要贡献在于,符号障碍方法具有许多优点。数值屏障算法。首先,与数值屏障算法不同,该方法(在某些假设下)生成问题的所有局部最优解,从而可以确定有界问题的全局最优解或多个全局最优解。此外,不需要初始可行的解决方案。给出了一些小的但困难的非线性测试问题的计算结果,并且将符号方法与当前的最新数值全局优化技术进行了对比。*。**本文包括一张需要ANSI标准CLOS的复合CD。运行时,例如Franz Inc.的Allegro Common Lisp。

著录项

  • 作者

    Borse, John Edward.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Operations research.;Computer science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号