首页> 外文学位 >Visualization of Complex Biomedical Data: Network, Clinical, and Imagery Data
【24h】

Visualization of Complex Biomedical Data: Network, Clinical, and Imagery Data

机译:复杂生物医学数据的可视化:网络,临床和图像数据

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we present visual analytics tools for several biomedical applications. Our research spans three types of biomedical data: reaction networks, longitudinal multidimensional clinical data, and biomedical images. For each data type, we present intuitive visual representations and efficient data exploration methods to facilitate visual knowledge discovery.;Rule-based simulation has been used for studying complex protein interactions. In a rule-based model, the relationships of interacting proteins can be represented as a network. Nevertheless, understanding and validating the intended behaviors in large network models are ineffective and error prone. We have developed a tool that first shows a network overview with concise visual representations and then shows relevant rule-specific details on demand. This strategy significantly improves visualization comprehensibility and disentangles the complex protein-protein relationships by showing them selectively alongside the global context of the network.;Next, we present a tool for analyzing longitudinal multidimensional clinical datasets, that we developed for understanding Parkinson's disease progression. Detecting patterns involving multiple time-varying variables is especially challenging for clinical data. Conventional computational techniques, such as cluster analysis and dimension reduction, do not always generate interpretable, actionable results. Using our tool, users can select and compare patient subgroups by filtering patients with multiple symptoms simultaneously and interactively.;Unlike conventional visualizations that use local features, many targets in biomedical images are characterized by high-level features. We present our research characterizing such high-level features through multiscale texture segmentation and deep-learning strategies. First, we present an efficient hierarchical texture segmentation approach that scales up well to gigapixel images to colorize electron microscopy (EM) images. This enhances visual comprehensibility of gigapixel EM images across a wide range of scales. Second, we use convolutional neural networks (CNNs) to automatically derive high-level features that distinguish cell states in live-cell imagery and voxel types in 3D EM volumes. In addition, we present a CNN-based 3D segmentation method for biomedical volume datasets with limited training samples. We use factorized convolutions and feature-level augmentations to improve model generalization and avoid overfitting.
机译:本文介绍了几种生物医学应用的可视化分析工具。我们的研究涉及三种类型的生物医学数据:反应网络,纵向多维临床数据和生物医学图像。对于每种数据类型,我们提供直观的视觉表示和有效的数据探索方法,以促进视觉知识的发现。基于规则的模拟已用于研究复杂的蛋白质相互作用。在基于规则的模型中,相互作用蛋白的关系可以表示为网络。但是,在大型网络模型中理解和验证预期的行为是无效且容易出错的。我们开发了一种工具,该工具首先以简洁的视觉表示显示网络概览,然后根据需要显示特定于规则的相关详细信息。通过选择性地在网络的全局上下文中显示它们,该策略可以显着提高可视化的可理解性并弄清复杂的蛋白质-蛋白质关系。接下来,我们提供了一种用于分析纵向多维临床数据集的工具,该工具是我们开发的用于了解帕金森氏病进展的工具。对于临床数据而言,检测涉及多个时变变量的模式尤其具有挑战性。传统的计算技术,例如聚类分析和降维,并不总是产生可解释的,可操作的结果。使用我们的工具,用户可以通过同时并交互地过滤具有多种症状的患者来选择和比较患者亚组。与传统的使用局部特征的可视化不同,生物医学图像中的许多目标都具有高级特征。我们目前通过多尺度纹理分割和深度学习策略来描述此类高级特征。首先,我们提出了一种有效的分层纹理分割方法,该方法可以很好地按比例放大至数百万像素图像,以使电子显微镜(EM)图像着色。这可以在很大范围内增强千兆像素EM图像的视觉可理解性。其次,我们使用卷积神经网络(CNN)自动推导高级特征,以区分活细胞图像中的细胞状态和3D EM体积中的体素类型。此外,我们为训练样本有限的生物医学数据集提供了基于CNN的3D分割方法。我们使用分解卷积和特征级增强来改善模型泛化并避免过度拟合。

著录项

  • 作者

    Cheng, Hsueh-Chien.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号