首页> 外文学位 >Simulation-based design optimization and control of thick composite laminates manufactured by resin transfer molding.
【24h】

Simulation-based design optimization and control of thick composite laminates manufactured by resin transfer molding.

机译:基于仿真的设计优化和控制,通过树脂传递模塑制造的厚复合层压板。

获取原文
获取原文并翻译 | 示例

摘要

Processing thick-sectioned composites (>1/2″ ) can be difficult due to the exothermic nature of the resin and the low thermal conductivity of the composite. This is particularly true for the Resin Transfer Molding process examined here. The temperature profile used to polymerize the resin, otherwise known as a "cure cycle," must be carefully chosen to reduce thermal gradients within the composite while ensuring satisfactory processing times. Instead of trial and error methods that are expensive, time consuming, and non-optimal, we propose a knowledge-based optimization strategy.;In order to be effective, the optimization strategy requires an accurate simulation of the process and supplementary heuristic information. A 1-D finite difference cure simulation was used to simulate the process. Some of the simulation's model input parameters were found directly through experimentation. Other input parameters were identified using a least-squares approach to match the simulation to experimental data from seven test composites. Because an accurate residual stress model for the process was unavailable, a heuristic for predicting the quality of a composite, based on the progression of resin cure within the composite, was used.;Four different global optimization schemes were studied: Random Walk, Simulated Annealing, Genetic Algorithms, and Evolutionary Strategies. The optimal cure cycle suggests heating the composite to initiate cure followed by a cooling stage to ensure inside-out curing. An extension of the Evolutionary Strategies optimization method was developed to account for the known variability in the simulation's input parameters and generate an optimum that can withstand some batch to batch variations.;In addition to the suggested cure cycle, we propose to implement adaptive control. Through a sensitivity analysis of the optimal cure cycle, the conditions and manner of altering the cure cycle were identified. Furthermore, instead of relying on intrusive sensors for control, heat flux sensors were installed within the mold to provide a more effective, reusable source of feedback. A simulated implementation of the optimized control strategy showed remarkable success, reducing the production of bad parts from 59% to 1%. However, heat loss through the mold and sensor noise during the actual experiment did not allow for its successful experimental implementation.
机译:由于树脂的放热性质和复合材料的低导热性,因此难以加工厚截面的复合材料(> 1/2英寸)。对于此处检查的树脂传递模塑工艺尤其如此。必须仔细选择用于聚合树脂的温度曲线(也称为“固化循环”),以减少复合材料内的热梯度,同时确保令人满意的加工时间。代替昂贵,费时且不理想的反复试验方法,我们提出了一种基于知识的优化策略。为了有效,优化策略需要对过程和辅助启发式信息进行精确的仿真。一维有限差分固化模拟用于模拟该过程。直接通过实验找到了一些模拟的模型输入参数。使用最小二乘法确定其他输入参数,以使模拟与来自七个测试复合材料的实验数据相匹配。由于无法获得该过程的精确残余应力模型,因此使用了基于树脂在复合物中固化的进度来预测复合物质量的启发式方法。;研究了四种不同的全局优化方案:随机游走,模拟退火,遗传算法和进化策略。最佳固化周期建议先加热复合材料以开始固化,然后再进行冷却以确保由内而外的固化。开发了进化策略优化方法的扩展,以解决模拟输入参数中已知的可变性,并生成可以承受批次间差异的最佳方法。除了建议的固化周期外,我们建议实施自适应控制。通过对最佳固化周期的敏感性分析,确定了改变固化周期的条件和方式。此外,不是依靠侵入式传感器进行控制,而是在模具内安装了热通量传感器,以提供更有效,可重复使用的反馈源。优化控制策略的模拟实施显示出了巨大的成功,将不良零件的生产从59%减少到1%。但是,在实际实验过程中,通过模具产生的热量损失和传感器噪声并不能使其成功实施实验。

著录项

  • 作者

    Michaud, Dennis J.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemical engineering.;Materials science.;Plastics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号