首页> 外文学位 >Mathematical modeling of the dynamics and production of biosensors.
【24h】

Mathematical modeling of the dynamics and production of biosensors.

机译:生物传感器动力学和生产的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

The central theme of this dissertation is the analysis of biosensors and biosensor platforms by mathematical modeling of mass-transport processes. More efficient operation and production of biosensors is achieved through theoretical analyses of the physical processes that are involved in measurement and production of biosensors.;In this thesis I mathematically model the mass-transport processes that occur outside the glucose biosensor itself to improve the precision of biosensor measurements. The biosensor measures glucose concentrations in the subcutaneous tissue while measurements of blood glucose concentrations are desired. Classical regularization allows the real-time prediction of blood glucose concentrations based on the biosensor measurements of subcutaneous glucose. The optimal parameters for the application of the regularization method, including the sampling rate and smoothing condition, are found by a Monte-Carlo type simulation study. ELISA is also used to test the continuous glucose sensors for leaching of glucose oxidase, which is the enzyme employed in the transduction layer.;For the manufacture of microarray-type biosensors, I apply mathematical analysis to understand how sensor platforms, or microwell chips, can be optimally produced using two new lithographic techniques: imprint lithography and thermocapillary lithography. In imprint lithography a squeeze flow that occurs between a sinusoidally corrugated plate and a flat plate is studied to evaluate the effect of corrugations on compression rate. Asymptotic analysis and simulations were used to solve two- and three-dimensional squeeze flow problems. I conclude that the compression rate of plates with fewer than 50 corrugations is qualitatively different from that of flat plates. Finally, I explore the production of microwell chips using thermocapillary lithography. This technique takes advantage of instabilities in thin films caused by the motion of the film surface due to temperature gradients on the surface. Numerical simulations, linear analysis and scaling analysis are used to explore the stability map of thin film flow that is subject to thermocapillary, capillary and van der Waals forces. The analysis predicts that thermocapillary lithography can effectively produce simple micron-scale patterns on surfaces. Potential applications for these lithographic techniques include the manufacture of microelectronic devices, photonic devices, controlled-release microchips and biosensor platforms.
机译:本文的主题是通过质量传输过程的数学建模来分析生物传感器和生物传感器平台。通过对生物传感器的测量和生产过程中涉及的物理过程的理论分析,可以实现生物传感器的更有效的操作和生产。在本文中,我对葡萄糖生物传感器自身之外发生的质量传输过程进行了数学建模,以提高生物传感器的精确度。生物传感器测量。当需要测量血糖浓度时,生物传感器测量皮下组织中的葡萄糖浓度。经典的正则化可以根据皮下葡萄糖的生物传感器测量值实时预测血糖浓度。通过蒙特卡洛型仿真研究找到了应用正则化方法的最佳参数,包括采样率和平滑条件。 ELISA还用于测试连续葡萄糖传感器中的葡萄糖氧化酶的浸出,葡萄糖氧化酶是转导层中使用的酶。对于微阵列型生物传感器的制造,我应用数学分析来了解传感器平台或微孔芯片如何可以使用两种新的光刻技术优化生产:压印光刻和热毛细管光刻。在压印光刻中,研究了正弦波纹板和平板之间的挤压流动,以评估波纹对压缩率的影响。渐近分析和模拟用于解决二维和三维挤压流动问题。我得出的结论是,波纹少于50个的平板的压缩率在质量上与平板有所不同。最后,我探索了使用热毛细管光刻技术生产微孔芯片的方法。该技术利用由于表面上的温度梯度而由膜表面的运动引起的薄膜不稳定性。数值模拟,线性分析和比例分析用于探索受热毛细管,毛细管和范德华力作用的薄膜流的稳定性图。该分析预测,热毛细管光刻可以在表面上有效地产生简单的微米级图案。这些光刻技术的潜在应用包括微电子器件,光子器件,控释微芯片和生物传感器平台的制造。

著录项

  • 作者

    Freeland, Angela Colleen.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号