首页> 外文学位 >Giant magnetostrictive composites (GMCs).
【24h】

Giant magnetostrictive composites (GMCs).

机译:巨型磁致伸缩复合材料(GMC)。

获取原文
获取原文并翻译 | 示例

摘要

The limitation of magnetostrictive composites has been in their low magnetostrictive response when compared to their monolithic counterparts. In this dissertation research is presented describing the methods and analysis used to create a giant magnetostrictive composite (GMC) producing giant strains at low fields, exhibiting magnetization "jumping" and the DeltaE effect. This composite combines the giant magnetostrictive material, Terfenol-D (Tb0.3Dy0.7Fe2) in particle form, with a nonmetallic binder and is capable of producing strains (at room temperature) exceeding 1000 ppm at a nominal field of 1.5 kOe mechanically unloaded and 1200 ppm at 8 MPa preload (2.5 kOe).; Several studies leading to the high response of this composite are presented. A connectivity study shows that a [1--3] connected composite produces 50% more strain than a [0--3] composite. A resin study indicates that the lower the viscosity of the resin, the greater the magnetostrictive response; this is attributed to the removal of voids during degassing. A void study correlates the increase in voids to the decrease in strain response. A model is used to correlate analysis with experimental results within 10% accuracy and shows that an optimal volume fraction exists based on the properties of the binder. Using a Polyscience Spurr low-viscosity (60 cps) binder this volume fraction is nominally 20%; this optimum is attributed to the balance of epoxy contracting on the particle (built-in preload) and the actuation delivered by the magnetostrictive material. In addition to the connectivity, resin, void, and volume-fraction study, particle size and gradation studies are presented.; Widely dispersed (106, 212, 300 mum), narrowly dispersed (45, (90--106), (275--300) mum), and an optimized bimodal (18.7% of (45--90) mum with 81.3% of (250--300) mum) particle distributions are studied. Results show that the larger the particle size, the higher the magnetostrictive response; this is attributed to the reduction of demagnetizing effects. Results also show that the wider the distribution, the higher the magnetostrictive response and is attributed to the increase in packing density. Using a bimodal optimized distribution, both large particle response as well as superior packing is achieved resulting in a material that produces the largest magnetostriction reported for low fields.
机译:与整体式复合材料相比,磁致伸缩复合材料的局限性在于其低磁致伸缩响应。在本论文中,提出了描述用于创建在低磁场下产生巨大应变,表现出磁化“跳跃”和DeltaE效应的巨型磁致伸缩复合材料(GMC)的方法和分析的研究。这种复合材料将颗粒形式的巨大磁致伸缩材料Terfenol-D(Tb0.3Dy0.7Fe2)与非金属粘合剂结合在一起,并且能够在1.5 kOe的标称电场下机械卸载并产生超过1000 ppm的应变(在室温下)。在8 MPa预载(2.5 kOe)下为1200 ppm;提出了一些导致这种复合材料高响应的研究。连通性研究表明,[1--3]连接的复合材料比[0--3]复合材料产生的应变高50%。一项树脂研究表明,树脂的粘度越低,磁致伸缩响应越大;反之,这归因于在脱气期间去除了空隙。空隙研究将空隙的增加与应变响应的降低相关联。使用一个模型将分析结果与实验结果相关联,准确度在10%以内,并表明基于粘合剂的性能存在最佳体积分数。使用Polyscience Spurr低粘度(60 cps)粘合剂时,该体积分数名义上为20%。该最佳值归因于颗粒上的环氧收缩(内置预载)和磁致伸缩材料提供的驱动力之间的平衡。除了连通性,树脂,空隙和体积分数研究之外,还提供了粒度和渐变研究。广泛分散(<106,<212,<300毫米),狭窄分散(<45,(90--106),(275--300)毫米)和优化的双峰(45.90的18.7%)研究了(250--300)妈妈中81.3%的粒子分布。结果表明,粒径越大,磁致伸缩响应越高。这归因于消磁效果的降低。结果还表明,分布越宽,磁致伸缩响应越高,这归因于堆积密度的增加。使用双峰优化分布,既可以实现大颗粒响应,又可以实现出色的堆积效果,从而使材料在低磁场下产生最大的磁致伸缩。

著录项

  • 作者

    Duenas, Terrisa Ann.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.; Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;电磁学、电动力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号