首页> 外文学位 >Computational models of phytoestrogens, mycoestrogens, and diethylstilbestrol analogues.
【24h】

Computational models of phytoestrogens, mycoestrogens, and diethylstilbestrol analogues.

机译:植物雌激素,霉菌雌激素和己烯雌酚类似物的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Phytoestrogens are plant-derived compounds that are known to induce estrogen activity and are important components of various foods including soy products, broccoli, and fruits and vegetables. Mixtures of phytochemicals are also marketed as dietary supplements to relieve postmenopausal symptoms. This study focuses on phytoestrogens, mycoestrogens, and diethylstilbestrol (DES) analogues that have been known to activate the alpha isoform of the human estrogen receptor (ER). We believe a structure-activity pattern exists within the chemical structure of the phytoestrogen and DES compounds that correlates to estrogen Receptor binding activity. Holographic Quantitative Structure-Activity Relationship (HQSAR) models with two-dimensional (2d) descriptors can describe this pattern, as well as three-dimensional (3d) models such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) which were produced using the Quantitative Structure-Activity Relationship (QSAR) method. Within this structure-activity relationship, we believe that these compounds bind to the estrogen receptor. The HQSAR model that was developed defines two-dimensional fragments (4-7 atom fragments) responsible for ER activity (Q2=0.758, R2=0.915). The 3d structures were used to develop the CoMFA and CoMSIA QSAR models that defined distinct structure features responsible for ER binding activity (Steric, Electrostatic, Hydrophobic). All relevant isomers and enantiomers were modeled to include the stereochemical nature of particular phytoestrogens in these 3D-QSAR models. The optimal CoMFA model displayed a predictive Q2 of 0.792 (R2=0.983) while the optimal CoMSIA model produced in a predictive Q2 of 0.831 (R2=0.933). Although the phytoestrogens have a similar backbone and rather rigid structure, the mycoestrogens have very little in common with the other classes of compounds and are more flexible than both phytoestrogens and diethylstilbestrol derivatives, however they persist to have an effect on the estrogen receptor. Therefore, we investigated how the conformation, flexibility, and general structure of the mycotoxins affect the binding that occurs between the mycotoxins, phytoestrogens, DES derivatives and the ER, and how this correlates to Estrogen Receptor binding activity. Isomers and enantiomers, Phytoestrogens, DES derivatives, and mycoestrogens were generated using the computer program Stereoplex, while the 3d structures were generated using the program Concord. Conformations of the structures were produced using Confort, and the removal of potentially identical compounds was performed by using a root means squared deviation of 0.75A as the minimum threshold of diversity for identifying duplicate compounds for the mycoestrogens. Comparison of the compounds to available crystal structures of the same Mycoestrogen from the Cambridge Structural Database was done to ensure the correct structures were produce, and the compounds where then aligned using FlexS with DES and 17beta-Estradiol (E2) as templates. The compounds were docked to the alpha isoform of the Estrogen Receptor from the 1ERE crystal structure using Surflex-Dock, and scored using CScore. Finally, docking and scoring results from the mycoestrogens suggested that the functional groups found on both phytoestrogens and diethylstilbestrol derivatives had an effect on the compounds activity when bound to the ER. Therefore, additional docking studies were performed to determine what effect they would have on the activity. The docking profiles show that very subtle differences exist within the compounds that allows them to mimic and bind to the estrogen receptor to allow activation of the receptor, and their alignment suggest features that are consistent to allow for mimicking 17beta-Estradiol. We conclude that the conformation searching, flexibility analysis, and the docking profiles focuses on features of the compounds that allow for activation of the estrogen receptor. This study has produced the most comprehensive QSAR models of ER binding activity for myco, phyto and stilbene estrogens to date. These three models have considerable potential to predict the ER binding activity of myco, phyto and stilbene compounds found through database screening or the analytical separation and identification of plant and fungal extracts.
机译:植物雌激素是植物来源的化合物,已知会诱导雌激素活性,并且是包括大豆制品,西兰花,水果和蔬菜在内的各种食品的重要成分。植物化学混合物也可以作为膳食补充剂来缓解绝经后症状。这项研究的重点是已知能激活人类雌激素受体(ER)的α同工型的植物雌激素,霉菌雌激素和己烯雌酚(DES)类似物。我们认为,植物雌激素和DES化合物的化学结构中存在与雌激素受体结合活性相关的结构活性模式。具有二维(2d)描述符的全息定量结构-活性关系(HQSAR)模型可以描述此模式,以及诸如比较分子场分析(CoMFA)和比较分子相似性指标分析(CoMSIA)的三维(3d)模型)是使用定量构效关系(QSAR)方法生成的。在这种结构-活性关系中,我们认为这些化合物与雌激素受体结合。已开发的HQSAR模型定义了负责ER活性的二维片段(4-7个原子片段)(Q2 = 0.758,R2 = 0.915)。 3d结构用于开发CoMFA和CoMSIA QSAR模型,该模型定义了负责ER结合活性(立体,静电,疏水)的独特结构特征。对所有相关的异构体和对映异构体进行建模,以包括这些3D-QSAR模型中特定植物雌激素的立体化学性质。最佳CoMFA模型显示的预测Q2为0.792(R2 = 0.983),而最佳CoMSIA模型产生的预测Q2为0.831(R2 = 0.933)。尽管植物雌激素具有相似的骨架和相当刚性的结构,但霉菌雌激素与其他类别的化合物几乎没有共同点,并且比植物雌激素和己烯雌酚衍生物都具有更高的柔韧性,但是它们仍然对雌激素受体产生影响。因此,我们调查了霉菌毒素的构象,柔韧性和总体结构如何影响霉菌毒素,植物雌激素,DES衍生物和ER之间的结合,以及这与雌激素受体结合活性的关系。使用计算机程序Stereoplex生成异构体和对映体,植物雌激素,DES衍生物和霉菌雌激素,而使用Concord程序生成3d结构。使用Confort生产结构的构象,并使用0.75A的均方根偏差作为多样性最小阈值,用于鉴定真菌雌激素的化合物,去除潜在相同的化合物。将化合物与来自剑桥结构数据库的同一霉菌雌激素的可用晶体结构进行比较,以确保产生正确的结构,然后使用FlexS以DES和17β-雌二醇(E2)作为模板对化合物进行比对。使用Surflex-Dock将化合物从1ERE晶体结构对接至雌激素受体的α同工型,并使用CScore进行评分。最后,霉菌雌激素的对接和评分结果表明,在植物雌激素和二乙基雌二醇衍生物上发现的官能团在与ER结合时对化合物的活性有影响。因此,进行了额外的对接研究,以确定它们将对活动产生什么影响。对接曲线表明,化合物中存在非常细微的差异,使它们能够模仿并结合到雌激素受体上,从而激活受体,并且它们的比对表明它们的特征与允许模仿17β-雌二醇一致。我们得出的结论是,构象搜索,灵活性分析和对接配置文件着重于允许激活雌激素受体的化合物的特征。这项研究为真菌,植物和1,2-二苯乙烯雌激素提供了最全面的QSAR ER结合活性模型。这三种模型具有很大的潜力,可以预测通过数据库筛选或分析分离和鉴定植物和真菌提取物而发现的霉菌,植物和二苯乙烯化合物的ER结合活性。

著录项

  • 作者

    Williams, Kirk Yancy.;

  • 作者单位

    Tulane University.;

  • 授予单位 Tulane University.;
  • 学科 Chemistry Biochemistry.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号