首页> 外文学位 >Imaging of hard X-rays with a multilayer Kirkpatrick-Baez CCD microscope in the laboratory and at the synchrotron.
【24h】

Imaging of hard X-rays with a multilayer Kirkpatrick-Baez CCD microscope in the laboratory and at the synchrotron.

机译:在实验室和同步加速器上使用多层Kirkpatrick-Baez CCD显微镜对硬X射线成像。

获取原文
获取原文并翻译 | 示例

摘要

An improved Kirkpatrick-Baez hard x-ray microscope with spherical multilayer mirrors and a fully electronic CCD camera detector has been designed, built, tested and successfully used in the laboratory and at the synchrotron. This microscope is an improved tool for submicron imaging of materials structure, composition and dynamics, which will allow higher resolution and faster investigations of semiconductor microstructures, magnetic domains and other advanced materials problems. We have demonstrated x-ray image acquisition at the video rate of 60 frames per second using a synchrotron source, a large advance over previous capabilities. The microscope field of view can be 140 mum by 140 mum, with a measured resolution less than 1 mum, a limit imposed to date by the detector pixel size. Computer simulations predict an intrinsic resolution down to 0.2 mum, making this device equivalent in resolution to slower x-ray microprobes, with significantly faster imaging speed.; The improved microscope performance is a result of extensive computational and laboratory studies of the effects of x-ray mirror slope error, roughness, and other ray fluorescence emitted by an object illuminated by a synchrotron x-ray beam. Such applications will likely require the higher intensities predicted for the next generation imperfections on image quality. The microscope has been used for hard x-ray imaging in both absorption and diffraction modes. The former is useful for imaging of buried x-ray absorbing structures in matrices partially transparent to x-rays. The latter is suited for imaging of opaque, but reflective structures such as microelectronic devices of silicon and gallium arsenide crystalline wafers. The microscope resolution is four times higher at the synchrotron than in the laboratory, when imaging absorption. The resolution of diffraction imaging in the laboratory is equivalent to the resolution of absorption imaging at the synchrotron, however the synchrotron imaging is always vastly faster. We have also investigated the possibility of using this microscope design for x-ray fluorescence microscopy, where the image is formed from the characteristic x-ray fluorescence emitted by an object illuminated by a synchrotron x-ray beam. Such applications will likely require the higher intensities predicted for the next generation synchrotron sources.
机译:一种改进的带有球形多层反射镜的Kirkpatrick-Baez硬X射线显微镜和一个全电子CCD照相机探测器已经设计,制造,测试并成功用于实验室和同步加速器。该显微镜是对材料结构,成分和动力学进行亚微米成像的一种改进工具,可以实现更高的分辨率并更快地研究半导体微结构,磁畴和其他高级材料问题。我们已经展示了使用同步加速器源以每秒60帧的视频速率采集X射线图像的能力,这比以前的功能有了很大的进步。显微镜的视场可以是140毫米x 140毫米,测量的分辨率小于1微米,这是迄今为止探测器像素尺寸所施加的极限。计算机模拟预测其固有分辨率可低至0.2微米,从而使该设备的分辨率等同于速度较慢的X射线微探针,且成像速度明显更快。改进的显微镜性能是对由同步加速器X射线束照射的物体发出的X射线镜斜率误差,粗糙度和其他射线荧光的影响进行大量计算和实验室研究的结果。对于下一代图像质量的缺陷,此类应用可能需要更高的强度。显微镜已用于吸收和衍射模式的硬X射线成像。前者可用于对部分X射线透明的矩阵中的X射线吸收结构进行成像。后者适用于不透明但反射结构的成像,例如硅和砷化镓晶体晶片的微电子器件。成像吸收时,同步加速器的显微镜分辨率是实验室的四倍。实验室中衍射成像的分辨率与同步加速器上的吸收成像的分辨率相同,但是同步加速器成像始终要快得多。我们还研究了将这种显微镜设计用于X射线荧光显微镜的可能性,其中图像是由同步加速器X射线束照射的物体发出的特征X射线荧光形成的。此类应用可能需要为下一代同步加速器源预测更高的强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号