首页> 外文学位 >Interpretation of infrasound generated by erupting volcanoes and seismo-acoustic energy partitioning during Strombolian explosions.
【24h】

Interpretation of infrasound generated by erupting volcanoes and seismo-acoustic energy partitioning during Strombolian explosions.

机译:解释由Strombolian爆炸中的火山喷发和地震声能分配产生的次声。

获取原文
获取原文并翻译 | 示例

摘要

Infrasonic signals provide a valuable tool for the study of volcanic eruptions because volcanoes generate the majority of their acoustic energy in the infrasonic bandwidth and infrasound is only slightly affected by propagation filters, transmission losses, dispersion, and instrument site responses. Though changing atmospheric properties can influence infrasonic amplitudes and arrival times, they do not significantly distort the original waveform. Because of the simplicity of acoustic propagation filters (compared to seismic propagation filters), recorded infrasonic pressure waveforms can reveal the overpressure time history at the vent which may be integrated to estimate explosive gas mass flux. Digitized video records are able to substantiate the relationship between infrasound intensity and the rate change of gas mass flux released during an explosion.; This dissertation analyzes and interprets the radiated infrasound and seismicity produced by five different active volcanoes. The case studies encompass low-viscosity Strombolian activity (Erebus, Antarctica), medium viscosity Strombolian activity (Karymsky, Russia and Sangay, Ecuador), a more vigorous Vulcanian eruption (Tungurahua, Ecuador), and degassing explosions from an active dacitic dome (Pichincha, Ecuador). The complexity of both the infrasonic and seismic waveforms at these five volcanoes appears related to the viscosity and volatile content of the different magmas. Erebus explosion signals are uniform, short-duration bursts because gas is able to easily escape the low-viscosity magma. Conversely, extended-duration degassing signals at the other volcanoes can be attributed to higher magma viscosity.; At both Erebus and Karymsky, arrays of low-frequency microphones and seismometers were deployed within several kilometers of the degassing source to quantify the elastic energy that propagates into the ground and into the atmosphere. Acoustic efficiency (relative to the radiated seismic energy) is attributed to shallow explosion sources with associated impulsive gas outflux. Strombolian explosions at Erebus appear acoustically efficient compared to Karymsky because gas release occurs at the surface of the lava lake. Karymsky explosion sources emanate from shallow depths within the conduit diminishing the impulsivity of gas release from the vent of the volcano. Scatter in the seismic-acoustic energy radiation at Karymsky reveals that conditions in the conduit change during the course of an explosion.
机译:次声信号为研究火山喷发提供了有价值的工具,因为火山在次声带宽中产生了大部分声能,次声仅受到传播滤波器,传输损耗,色散和仪器位置响应的轻微影响。尽管不断变化的大气特性会影响次声振幅和到达时间,但它们不会使原始波形显着失真。由于声传播过滤器(与地震传播过滤器相比)的简单性,记录的次声波压力波形可以揭示出气孔处的过压时间历史,可以将其集成以估算爆炸性气体质量通量。数字化的视频记录能够证实次声强度与爆炸过程中释放的气体质量通量的变化率之间的关系。本文分析并解释了五个不同活火山的辐射次声和地震活动。案例研究包括低粘度Strombolian活动(南极洲的埃雷布斯),中等粘度Strombolian活动(厄瓜多尔的Karymsky和俄罗斯的Sangay),厄瓜多尔的火山爆发更剧烈(厄瓜多尔的通古拉瓦)和活跃的Datictic Dome(Pichincha)进行除气爆炸,厄瓜多尔)。这五个火山的次声波和地震波的复杂性似乎与不同岩浆的粘度和挥发物含量有关。由于气体能够轻松逸出低粘度岩浆,因此Erebus爆炸信号是均匀的,短时爆炸。相反,在其他火山中持续时间较长的脱气信号可归因于较高的岩浆粘度。在埃雷布斯(Erebus)和卡林斯基(Karymsky)处,在脱气源几公里内部署了一系列低频麦克风和地震仪,以量化传播到地面和大气中的弹性能。声效率(相对于辐射的地震能量)归因于浅爆炸源以及相关的脉冲气体涌出。与Karymsky相比,Erebus的Strombolian爆炸在声学上似乎很有效,因为气体释放发生在熔岩湖的表面。卡里姆斯基爆炸源是从导管内的浅深度发出的,从而减少了从火山喷口释放的气体的冲动。卡林斯基(Karymsky)的地震声能辐射中的散射表明,导管的状况在爆炸过程中发生了变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号