首页> 外文学位 >Computational methods to simulate large classical particle systems with applications to fluids and microporous materials.
【24h】

Computational methods to simulate large classical particle systems with applications to fluids and microporous materials.

机译:用于模拟大型经典粒子系统并应用于流体和微孔材料的计算方法。

获取原文
获取原文并翻译 | 示例

摘要

A completely discrete—discrete space, time and energy—computational model and its implementation is presented here as an alternative to continuous type simulations such as Molecular Dynamics and continuum Monte Carlo methods. The final goal is to reduce the amount of the calculation per particle in order to increase the timescale of the simulation and the size of the particle system simulated. The computation is performed on a lattice with discrete particles in discrete states.; The fundamental particle simulation algorithms are studied. The well known neighbor-list or Verlet-list method is speeded up from quadratic to linear size dependence. This algorithm is applicable to continuous simulations also, it is lattice independent. Then the cell-list method is adapted to discrete lattices, using efficient bit manipulations. A field-representation method is developed as well as a generalization of the Lattice-Gas method.; The discrete computational techniques and other programming methods for today's advanced computer architectures are discussed in detail with their implementations in Fortran. The high performance of the whole method is mainly due to these techniques. Performance data are presented for the different methods.; The pair distribution function and density profiles inside parallel slits are calculated for different fluid densities. The lattice effects are successfully removed from the pair distribution function. The results agree well with continuum results for large slit widths. New results on layering for very narrow slit widths are presented.; Finally a lattice-based geometrical method is presented to characterize the structure of void space inside zeolites. This method is generic, it can be applied to arbitrary atomic and geometrical systems as well.
机译:本文介绍了一个完全离散的,离散的空间,时间和能量的计算模型及其实现,以替代诸如分子动力学和连续蒙特卡洛方法之类的连续类型模拟。最终目标是减少每个粒子的计算量,以增加模拟的时间尺度和模拟的粒子系统的大小。该计算是在具有离散状态的离散粒子的晶格上执行的。研究了基本粒子模拟算法。众所周知的邻居列表或Verlet列表方法从二次依赖速度加快到线性依赖速度。该算法也适用于连续仿真,它与晶格无关。然后,使用有效的位操作将单元列表方法应用于离散晶格。开发了一种场表示方法以及对Lattice-Gas方法的推广。讨论了当今高级计算机体系结构的离散计算技术和其他编程方法,以及它们在Fortran中的实现。整个方法的高性能主要归功于这些技术。给出了不同方法的性能数据。针对不同的流体密度,计算平行狭缝内部的对分布函数和密度分布。从对分布函数中成功删除了晶格效应。该结果与大缝隙宽度的连续谱结果非常吻合。提出了在非常窄的狭缝宽度上分层的新结果。最后,提出了一种基于晶格的几何方法来表征沸石内部空隙空间的结构。这种方法是通用的,它也可以应用于任意原子和几何系统。

著录项

  • 作者

    Nagy, Tibor Ferenc.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics Condensed Matter.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号