首页> 外文学位 >Optimum design and 3D CAD/CAE simulation of spiroid and worm gears.
【24h】

Optimum design and 3D CAD/CAE simulation of spiroid and worm gears.

机译:螺旋齿轮和蜗轮的优化设计和3D CAD / CAE仿真。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes research conducted by the author on the optimum design and 3D CAD/CAE virtual simulation of spiroid and worm gear drives. Three major contributions have been made: (1) an innovative approach to obtain favourable localised tooth contact, (2) a novel 3D parametric modelling methodology - virtual gear manufacturing (VGM), and (3) a feasible procedure for loaded multi-tooth contact analysis using an advanced finite element method. These techniques developed are illustrated using two types of spiroid gears including a conventional spiroid gear drive (whose pinion is a conical worm) and a helicon gear drive (whose pinion is a cylindrical worm), and three types of cylindrical worm gears including ZA, ZN and ZI. Favourable localised tooth contact is achieved by modifying the worm tooth surface. With this approach, only the worm cutter's geometrical angles and mounting position need to be adjusted. This approach is simpler and more economical than existing gear tooth modification methods because it can be implemented in standard gear bobbing machines without any modification to the hob geometry. Numerical simulations of the localised tooth contact have been conducted. The results confirm that the proposed gear modifying method can provide substantially improved localised bearing contact and is largely insensitive to misalignments, hi addition, the modified spiroid and worm gears have significant advantages over conventional designs such as better lubrication conditions, higher load capacity, longer working life and lower manufacturing costs. The VGM methodology developed includes virtual manufacturing of worm and gears within a computer software environment, creation of 3D parametric and adaptable gear models, and utilisation of the VGM models to simulate gear mesh, to analyse the contact pattern, and to detect tooth interference. Unlike conventional 3D modelling methods, the VGM method does not require complicated mathematical modelling and therefore the difficulties associated with the solution of nonlinear meshing equations can be avoided. In contrast to the existing modem computerised gear theory that can only numerically simulate the meshing of gearing in point or line contact, the VGM method has the capability to visually simulate the general regional contact problems. Consequently, the VGM method can help to significantly reduce the manufacturing cost in the design stage. The 3D gear models, created in Pro/Engineer using the VGM method, are imported into ANSYS via the IGES interface for the loaded multi-tooth contact analysis. Evaluation of solid and contact elements for nonlinear gear contact analysis has been conducted. Advanced techniques have been developed for 3D gear model geometry cleanup, 3D gear geometry data transferring via the IGES interface and 3D finite element model meshing. 14 full multi-teeth contact finite element models of spiroid and worm gears have been created. The loaded tooth contact stresses and deformations of spiroid and worm gear drives under different operating positions have been analysed. The results of the tooth stresses and tooth load shares successfully simulate the real gear operation. The FE models enable the loaded tooth contact pattern, stress distribution, contact force distribution and load share to be fully examined for the first time. This is impossible for conventional theoretical methods and experimental methods. Using the procedures and techniques developed in this research, researchers and engineers will be able to conduct and gain substantial benefits from the loaded gear tooth contact analysis.
机译:本文介绍了作者对螺线管和蜗轮蜗杆传动的优化设计和3D CAD / CAE虚拟仿真的研究。已经做出了三项主要贡献:(1)一种获得良好的局部齿接触的创新方法,(2)一种新颖的3D参数建模方法-虚拟齿轮制造(VGM),以及(3)一种用于加载多齿接触的可行程序使用高级有限元方法进行分析。这些开发的技术使用两种类型的螺旋齿轮进行说明,包括常规的螺旋齿轮驱动器(小齿轮是圆锥形蜗杆)和螺旋齿轮驱动器(其小齿轮是圆柱蜗杆),以及三种类型的圆柱齿轮,包括ZA,ZN和ZI。通过修改蜗轮齿表面可以实现良好的局部牙齿接触。通过这种方法,只需要调整蜗轮蜗杆铣刀的几何角度和安装位置即可。这种方法比现有的齿轮齿修改方法更简单,更经济,因为它可以在标准的齿轮摆动机中实现,而无需对滚刀的几何形状进行任何修改。进行了局部齿接触的数值模拟。结果证实,提出的齿轮修改方法可以提供显着改善的局部轴承接触,并且对不对中高度不敏感。此外,与传统设计相比,修改后的螺旋齿和蜗轮具有明显的优势,例如,润滑条件更好,负载能力更高,工作时间更长寿命和降低制造成本。开发的VGM方法包括在计算机软件环境中虚拟制造蜗杆和齿轮,创建3D参数化和可适应的齿轮模型,以及利用VGM模型来模拟齿轮啮合,分析接触方式和检测牙齿干扰。与传统的3D建模方法不同,VGM方法不需要复杂的数学建模,因此可以避免与非线性网格方程求解相关的困难。与现有的只能用数值模拟点或线接触的齿轮啮合的现代计算机齿轮理论相反,VGM方法具有可视地模拟一般区域接触问题的能力。因此,VGM方法可以在设计阶段大大降低制造成本。使用VGM方法在Pro / Engineer中创建的3D齿轮模型通过IGES接口导入到ANSYS中,以进行加载的多齿接触分析。进行了用于非线性齿轮接触分析的固体和接触元件的评估。已经开发了用于3D齿轮模型几何清理,通过IGES接口传输3D齿轮几何数据和3D有限元模型网格划分的先进技术。已经创建了14个完整的螺旋齿和蜗轮齿多齿接触有限元模型。分析了在不同工作位置下的螺旋接触和蜗轮蜗杆传动的负载齿接触应力和变形。齿应力和齿负载分担的结果成功地模拟了实际的齿轮操作。有限元模型使首次对负载的牙齿接触方式,应力分布,接触力分布和负载分担进行了全面检查。对于常规的理论方法和实验方法来说这是不可能的。使用这项研究中开发的程序和技术,研究人员和工程师将能够从加载的齿轮齿接触分析中进行并获得实质性的收益。

著录项

  • 作者

    Song, Yongle.;

  • 作者单位

    Nottingham Trent University (United Kingdom).;

  • 授予单位 Nottingham Trent University (United Kingdom).;
  • 学科 Mechanical engineering.;Design.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 458 p.
  • 总页数 458
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号