首页> 外文学位 >Integrated logic and physical design for deep submicron VLSI optimization.
【24h】

Integrated logic and physical design for deep submicron VLSI optimization.

机译:用于深度亚微米VLSI优化的集成逻辑和物理设计。

获取原文
获取原文并翻译 | 示例

摘要

Circuit speed is one of the most important criteria for today's circuit designers. Since the minimum feature size of VLSI circuits reached the Deep Submicron (DSM) range, interconnects have become the dominant factor in determining the circuit speed. However, conventional Computer Aided Design tools and flows, which separate the front-end logic design from the back-end physical design, cannot achieve the maximum performance capability provided by the silicon fabrication process. Consequently, it has become necessary to develop and introduce new design automation techniques and design flows to fill the gap between the design tool capabilities and the silicon fabrication process potential. In recent years, integrated logic and physical co-design flows, which globally interleave and locally integrate front-end logic design and back-end physical design, have been widely accepted by design teams as the next generation in design methodology. In this new flow, front-end tools receive accurate interconnect parasitic data and power/delay/signal integrity estimates from the back-end tools, and pass detailed logical information and power/timing constraints to the back-end tools.; In this dissertation, a number of algorithms that perform integrated logic and physical optimizations at different stages in a logic and physical co-design flow are presented. The goal is to increase the operating speed of DSM circuits and achieve fast timing closure. First, a post-synthesis and pre-layout, simultaneous gate sizing and fanout optimization algorithm is presented. A continuous-variable delay model reflecting delay changes due to gate sizing and/or buffer tree insertion is provided. Based on this model, path delays of the circuit are optimized by a mathematical programming method. Next, a post-layout concurrent gate sizing and placement algorithm is presented. The technique consists of formulating the sizing and placement problem as a generalized geometric program. To control the problem size, an iterative optimization process is performed where the critical paths are identified and optimized in an iterative manner. Finally, a dynamic programming-based algorithm that constructs buffered routing trees under buffer placement blockages is presented. The proposed algorithm performs buffer insertion and sizing along with routing tree generation in one step.
机译:电路速度是当今电路设计人员最重要的标准之一。由于VLSI电路的最小特征尺寸达到了深亚微米(DSM)范围,因此互连已成为决定电路速度的主要因素。但是,将前端逻辑设计与后端物理设计分开的常规计算机辅助设计工具和流程无法实现硅制造工艺所提供的最大性能。因此,有必要开发和引入新的设计自动化技术和设计流程,以填补设计工具功能与硅制造工艺潜力之间的空白。近年来,集成逻辑和物理协同设计流程在全球范围内交织并局部集成了前端逻辑设计和后端物理设计,已被设计团队广泛接受为下一代设计方法。在这种新流程中,前端工具从后端工具接收准确的互连寄生数据和电源/延迟/信号完整性估计,并将详细的逻辑信息和电源/时序约束传递给后端工具。本文提出了许多在逻辑和物理协同设计流程的不同阶段执行集成逻辑和物理优化的算法。目的是提高DSM电路的工作速度并实现快速时序收敛。首先,提出了一种后合成和预布局,同时选通尺寸和扇出优化算法。提供了一个连续变量延迟模型,该模型反映了由于门大小和/或缓冲树插入而引起的延迟变化。基于该模型,通过数学编程方法优化电路的路径延迟。接下来,提出了布局后并发门调整大小和布局算法。该技术包括将尺寸和放置问题公式化为广义的几何程序。为了控制问题的大小,执行迭代优化过程,其中以迭代方式标识和优化关键路径。最后,提出了一种基于动态编程的算法,该算法在缓冲区放置阻塞下构造了缓冲的路由树。所提出的算法可以一步完成缓冲区插入和大小调整以及路由树的生成。

著录项

  • 作者

    Chen, Wei.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号