首页> 外文学位 >Process-based compact modeling and analysis of silicon-on-insulator CMOS devices and circuits, including double-gate MOSFETs.
【24h】

Process-based compact modeling and analysis of silicon-on-insulator CMOS devices and circuits, including double-gate MOSFETs.

机译:对绝缘体上硅CMOS器件和电路(包括双栅MOSFET)的基于过程的紧凑建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

The main topic of this dissertation is process-based modeling of scaled silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs), including double-gate (DG) MOSFETs. The University of Florida SOI (UFSOI) fully depleted (FD) and partially depleted (or non-fully depleted, NFD) SOI MOSFET compact models are refined and upgraded in order to apply them in simulations of scaled SOI CMOS devices and circuits. For DG MOSFETs, the first version of the University of Florida DG (UFDG) compact model is developed.; As CMOS technologies are being scaled down to deep sub-micron dimensions, more and more previously unimportant physical phenomena in the shrinking MOSFETs are becoming significant. Polysilicon-gate depletion and carrier-energy quantization, both of which reduce the drive current and the effective gate capacitance, are now important, and hence they are incorporated in the UFSOI models to assure accuracy of scaled device and circuit simulations. The UFSOI models are process-based, and hence their calibration must be done properly to ensure their reliability. To obtain a set of unequivocal model parameters, reflecting the process information and underlying physics of SOI MOSFETs, a process-based model-calibration methodology, which is simple and systematic, is developed and demonstrated for both FD and NFD devices.; We further apply UFSOI to gain insight into the behavior of SOI MOSFETs in integrated circuits via the physical nature of the model. A physics-based study of floating-body (FB) effects on the operation of SOI DRAM is done. Design insight regarding dynamic retention time and sensing is provided. However, due to the history-dependent FB effects in SOI CMOS circuits, comprehensive and intensive simulations are usually necessary. Hence, approximate analytical derivatives, needed for the Newton-Raphson-based nodal analysis in circuit simulation, are incorporated in UFSOI in order to reduce the run time for simulation-based study of the hysteresis.; Although SOI CMOS performance is superior to that of the bulk-silicon counterpart, its scalability is no better. A revolutionary approach to continuously exploit advantages of SOI without the worrisome FB effects is aimed at technologies like extremely scaled DG CMOS, which is evolved from FD/SOI. To extend the capability of UFSOI/FD for general DG application, a new process-based UFDG model is developed. The UFDG model is generic, enabling the evaluation of different DG structures and technologies at the circuit level. The model is demonstrated in comparisons of symmetrical- and asymmetrical-gate DG MOSFETs involving device and circuit simulations.
机译:本论文的主要主题是基于尺度的绝缘体上硅(SOI)互补金属氧化物半导体(CMOS)场效应晶体管(FET)的建模,包括双栅(DG)MOSFET。佛罗里达大学的SOI(UFSOI)和完全耗尽(FD)和部分耗尽(或非完全耗尽,NFD)的SOI MOSFET紧凑模型已经过完善和升级,以便将其应用于按比例缩放的SOI CMOS器件和电路的仿真中。对于DG MOSFET,开发了佛罗里达大学DG(UFDG)紧凑型模型的第一个版本。随着CMOS技术被缩小到深亚微米尺寸,在缩小的MOSFET中越来越不重要的物理现象变得越来越重要。如今,降低栅极电流和有效栅极电容的多晶硅栅极耗尽和载流子能量量化非常重要,因此将它们合并到UFSOI模型中,以确保按比例缩放器件和电路仿真的准确性。 UFSOI模型基于过程,因此必须正确进行校准以确保其可靠性。为了获得一组明确的模型参数,以反映SOI MOSFET的过程信息和基本物理特性,为FD和NFD器件开发并演示了一种基于过程的模型校准方法,该方法简单而系统。我们进一步应用UFSOI,通过模型的物理性质来深入了解集成电路中SOI MOSFET的行为。进行了基于物理的浮体(FB)对SOI DRAM操作影响的研究。提供有关动态保留时间和感测的设计见解。但是,由于SOI CMOS电路中依赖于历史的FB效应,通常需要全面而深入的仿真。因此,UFSOI包含了电路仿真中基于牛顿-拉夫森节点分析所需的近似分析导数,以减少基于仿真的磁滞研究的运行时间。尽管SOI CMOS的性能优于体硅CMOS的性能,但其可伸缩性却没有更好。一种革命性的方法,可以不断利用SOI的优势而又不会带来令人担忧的FB效应,其目标是从FD / SOI演变而来的超大规模DG CMOS之类的技术。为了扩展UFSOI / FD在一般DG应用中的能力,开发了一种新的基于过程的UFDG模型。 UFDG模型是通用的,可以在电路级别评估不同的DG结构和技术。该模型在对称栅极和非对称栅极DG MOSFET的比较中得到了证明,涉及器件和电路仿真。

著录项

  • 作者

    Chiang, Meng-Hsueh.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号