首页> 外文学位 >Application of ultrafast spectroscopy to the study of size-controlled, self-assembled indium gallium arsenide/gallium arsenide quantum dots.
【24h】

Application of ultrafast spectroscopy to the study of size-controlled, self-assembled indium gallium arsenide/gallium arsenide quantum dots.

机译:超快光谱技术在尺寸受控的自组装砷化铟镓/砷化镓量子点研究中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The delta-function-like density of states in self-assembled semiconductor quantum dots (QD) makes them highly promising for novel device applications, such as QD lasers. However, the threshold of state-of-the-art QD lasers remains highly temperature dependent, thus degrading their performance. A goal of present research is to reduce this temperature dependence by engineering the QD electronic states through controlled crystal growth. Another potential problem with QD lasers is a limited modulation rate, which may arise through restricted carrier energy relaxation. This phenomenon, which was predicted early in the study of QDs, is associated with the discrete nature of the QD energy states and the limited energy available in phonons, the principle source of energy relaxation in semiconductors. This “phonon bottleneck” remains controversial and has not yet been experimentally verified unambiguously. The problems of energy state engineering and the phonon bottleneck indicate that a systematic study of the carrier dynamics, which are directly related to both these phenomena and to device performance, is therefore of continuing interest.; In this dissertation, a temperature and density dependent study of the carrier dynamics in self-assembled, size-controlled quantum dots (SAQD) is presented. The dynamics are inferred from measurements of both excitonic ground state and first excited state emission in the In(Ga)As SAQD ensembles. The investigations encompass a set of four samples that differ in QD size and environment.; All of our observations indicate that the carrier dynamics in SAQDs are size-dependent. Therefore, it is possible to engineer the electronic structure so as to improve performance of QD-based devices. This, and the ability to control the QD size through manipulation of growth conditions, suggests that the electronic structure of SAQDs can be optimized for laser applications.
机译:自组装半导体量子点(QD)中的类似三角函数的状态密度使其对于新型器件应用(例如QD激光器)极有希望。但是,最先进的QD激光器的阈值仍然高度依赖于温度,从而降低了其性能。当前研究的目标是通过控制晶体生长来设计QD电子态,从而降低这种温度依赖性。 QD激光器的另一个潜在问题是调制速率有限,这可能是由于载流子能量松弛受限而引起的。这种现象是在量子点研究初期就预测到的,它与量子点能量态的离散性质以及声子中有限的能量有关,声子是半导体中能量弛豫的主要来源。这个“声子瓶颈”仍然是有争议的,并且尚未经过实验明确地验证。能量状态工程和声子瓶颈的问题表明,与这些现象和器件性能直接相关的对载流子动力学的系统研究一直受到关注。本文提出了自组装,尺寸受控量子点(SAQD)中载流子动力学的温度和密度依赖性研究。动力学是根据In(Ga)As SAQD集成体中激子基态和第一激发态发射的测量得出的。调查包括一组四个样本,这些样本的量子点大小和环境不同。我们所有的观察结果都表明SAQD中的载流子动力学与尺寸有关。因此,可以对电子结构进行工程设计以提高基于QD的设备的性能。这以及通过控制生长条件来控制QD尺寸的能力表明,可以为激光应用优化SAQD的电子结构。

著录项

  • 作者

    Zhang, Lin.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号