首页> 外文学位 >Electronically induced structure transformations in graphite & silver, studied using ultrafast electron crystallography.
【24h】

Electronically induced structure transformations in graphite & silver, studied using ultrafast electron crystallography.

机译:使用超快电子晶体学研究了石墨和银中的电子诱导结构转变。

获取原文
获取原文并翻译 | 示例

摘要

Electronically induced structure transformations are a unique class of phenomena in which material transformation can be effected by impulsive excitation of the electronic system, often resulting in exotic structural phases and transformation pathways inaccessible to thermodynamic channels. Using ultrafast electron crystallography (UEC), we have directly observed such photodinduced atomic dynamics in two systems - graphite and silver nanocrystals (Ag NC) that appear to be driven by the strong coupling between the laser excitation and lattice perturbations in the form of strongly coupled optical phonons and laser induced electron redistribution.;In graphite, structural changes resulting from photoexcitation with p-polarized, near-IR, femtosecond laser pulses are observed to lead to the nonthermal creation of a transient state with sp3 like bonding characteristics. At laser fluences approaching, but below the damage threshold, the average inter-layer spacing contracts along with creation of new inter-layer distances at ≈ 2 A while the lattice is only moderately heated. The advantage of using electrons (which carry a charge) as a probe is demonstrated, as it reveals the transformation to be driven by a hitherto unobserved surface dipole field, observed here via a Coulomb refraction shift of the scattered electrons within the sub-surface region. Ab initio density functional theory calculations are employed to relate these structural changes to a nonthermal heating of the electrons, followed by a photoinduced charge separation causing a compressive Coulomb stress.;To quantify the role and dynamics of electrons emitted from photoexcited surfaces, a novel 'point-projection method' is introduced, capable of directly imaging the spatiotemporal evolution of such photoemitted electron bunches. The method is shown to provide sufficient sensitivity to image electron bunches (as small as 1010 e/cm3) and permit quantitative investigation of the electron emission from photoexcited graphite surface. It is shown that such photoemission plays a minor role in the refraction shifts observed in the UEC study and a sub-surface dipole field is sufficient to explain the structural and charge relaxations observed. Investigations utilizing scanning electron microscope imaging of structures generated from laser ablation of graphite reveals the creation of geometrically faceted crystalline features, whose Raman spectrum exhibit sp3 like characteristics, though unambiguous identification of diamond structures generated requires further study.;In the case of silver nanocrystals (Ag NC), photoexcitation near the surface plasmon resonance (SPR) is observed to lead to fragmentation at fluences below their melting threshold. By isolating each NC from other neighboring NCs in a surface supported geometry, the normally irreversible process becomes reversible and amenable to multi-shot pump-probe diffraction investigations just below the fragmentation threshold. Transient structural, thermal and Coulombic signatures of the pre-fragmented state are extracted from the UEC investigation and combined with a progressive Reverse Monte-Carlo structure refinement scheme to visualize the atomic dynamics leading up to the fragmentation. Such multi-faceted analysis reveals the fragmentation to proceed through the creation and growth of undercoordinated defect sites along which the lattice is weakened. These defects are likely seeded by the strong coupling between SPR dephasing pathways and inter-band transitions that can lead to bond-softening effects and local valence instabilities. The creation of sufficient number of such defect sites at elevated fluences are believed to lead to the eventual fragmentation of the entire NC.;This thesis also details the design and principle of UEC systems employed in a surface probing geometry for the study of nanostructures and interfaces.
机译:电子诱导的结构转变是一类独特的现象,在这种现象中,电子系统的脉冲激发可以实现材料转变,通常会导致奇特的结构相和热力学通道无法达到的转变途径。使用超快电子晶体学(UEC),我们直接在两个系统中观察到了这种光诱导的原子动力学-石墨和银纳米晶体(Ag NC),这似乎是由激光激发与晶格扰动之间的强耦合以强耦合形式驱动的光学声子和激光诱导的电子再分布。在石墨中,观察到由于使用p偏振,近红外,飞秒激光脉冲进行光激发而引起的结构变化,导致非热生成具有sp3的键合特性的瞬态。当激光通量接近但低于损伤阈值时,平均层间间距会收缩,同时会在≈处产生新的层间距离。 2 A,仅适度加热晶格。证明了使用电子(带有电荷)作为探针的优势,因为它揭示了迄今尚未观察到的表面偶极子场驱动的转变,此处通过子表面区域内散射电子的库仑折射位移观察到。从头算密度泛函理论计算用于将这些结构变化与电子的非热加热相关联,然后进行光诱导的电荷分离,从而产生压缩库仑应力。为了量化从光激发表面发射的电子的作用和动力学,一种新颖的“引入了“点投影法”,该方法能够直接成像这种光发射电子束的时空演化。结果表明,该方法对图像电子束具有足够的灵敏度(小至1010 e / cm3),并且可以定量研究光激发石墨表面的电子发射。结果表明,这种光发射在UEC研究中观察到的折射位移中起次要作用,并且表面下的偶极子场足以解释观察到的结构和电荷弛豫。利用扫描电子显微镜对由石墨激光烧蚀产生的结构进行成像的研究表明,形成了几何刻面的晶体特征,其拉曼光谱表现出类似sp3的特性,尽管对产生的金刚石结构的明确鉴定尚需进一步研究。;在银纳米晶体的情况下( Ag NC),在表面等离振子共振(SPR)附近发生光激发,在低于其熔化阈值的注量下会导致碎片。通过将每个NC与其他相邻NC隔离在表面受支撑的几何形状中,通常不可逆的过程变得可逆,并且可以进行低于碎裂阈值的多次泵浦探针衍射研究。从UEC研究中提取了预碎片状态的瞬态结构,热和库仑特征,并与渐进式反向蒙特卡洛结构细化方案相结合,以可视化导致碎片的原子动力学。这种多方面的分析表明,碎片的产生是通过欠协调缺陷部位的产生和增长来进行的,沿着该缺陷部位,晶格被削弱。这些缺陷可能是由于SPR移相途径与带间跃迁之间的强耦合所导致的,这可能导致键软化效应和局部价态不稳定性。据信在提高的注量下产生足够数量的此类缺陷位点会导致整个NC最终碎裂。 。

著录项

  • 作者

    Raman, Ramani K.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号